
542

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 27

DOI: 10.4018/978-1-6684-3702-5.ch027

ABSTRACT

Software design is a basic plan of all elements in the software, how they relate to each other in such a
way that they meet the user requirements. In software development process, software design phase is an
important phase as it gives a plan of what to do and how to do it during the implementation phase. As
the technology is evolving and people’s needs in the technological field are increasing, the development
of software is becoming more complex. To make the development process somewhat easy, it is always
better to have a plan which is followed throughout the process. In this way, many problems can be solved
in the design phase, for which a number of tools and techniques are present. One is known as Design
Patterns. In software engineering, a design pattern is a general solution to commonly occurring problems
in software design. A design pattern isn’t a finished design that can be transformed directly into code.

A Survey on Different
Approaches to Automating the
Design Phase in the Software

Development Life Cycle
Sahana Prabhu Shankar

 https://orcid.org/0000-0001-8977-9898
Ramaiah University of Applied Sciences, India

Harshit Agrawal
 https://orcid.org/0000-0003-3515-0474

Ramaiah University of Applied Sciences, India

Naresh E.
 https://orcid.org/0000-0002-8368-836X

M. S. Ramaiah Institute of Technology, India

543

A Survey on Different Approaches to Automating the Design Phase in the Software Development Life Cycle

INTRODUCTION

For any software to be built, it is highly important that it satisfies the client’s needs. In order to completely
understand what the client wants from the software, Requirement Analysis phase plays a vital role as in
this phase, the analyst tries to gain as much about the domain, functioning and basic plan of the system
to be designed. Once the requirement analysis phase is completed, next is the Design phase. In design
phase, a basic outline/plan is made for the software to be built which includes all the elements which
will be used in the implementation phase. If there is any ambiguity in the analysis phase, the design
following the requirements collected, will also have the same ambiguity. Thus, it is very important to
collect and interpret all the user requirements carefully, correctly and completely.

It is suggested to always first define a basic design of the software to analyse its behaviour and also
to identify the short-term risks, so that informed design decisions can be made before the system goes
in the implementation phase. Not only this, but designing prior to the implementation phase can also be
helpful to breakdown the complex problems in simple sub-problems and thus making the implementation
part easier. From a good design phase, the software gains higher productivity, better code maintainability,
higher adaptability, and Quality. Thus, a good design is recommended for success of any software project.

The advantages of having a well-defined architecture in the software development process is that it
helps in making the software safer, more reliable, easy to implement and maintain. Since a well-defined
software architecture breaks down the software in smaller components, it also helps in reducing the prob-
lems generally occurring while developing complex softwares. Software architecture’s influence is on
engineering principle and it focusses on code, object design, boxes-and-arrows and GUI of the software.

DIFFERENT PHASES IN SOFTWARE DEVELOPMENT LIFE CYCLE

But software development lifecycle (SDLC) is not only about the design phase it consists of a total of
five phases:

1. Requirement Engineering
2. Design
3. Implementation
4. Integration and Testing
5. Operations and Maintenance

We already have learned so much about the design phase. Before going to the automation techniques
which are used in design phase let us first have a brief introduction about the rest of the phases.

REQUIREMENT ENGINEERING

The requirement phase of software engineering serves as the architecture of the software development.
It consists of analysing the needs of the stakeholders, discussing the proper approach to develop and
maintain the software and finally documenting each and every process required. This is known as re-
quirement engineering.

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/a-survey-on-different-approaches-to-automating-

the-design-phase-in-the-software-development-life-cycle/294482

Related Content

Survey of Cardinality Constraints in Snapshot and Temporal Semantic Data Models
Faiz Currimand Sudha Ram (2009). Systems Analysis and Design for Advanced Modeling Methods: Best

Practices (pp. 25-41).

www.irma-international.org/chapter/survey-cardinality-constraints-snapshot-temporal/30012

Applying AHP for Collaborative Modeling Evaluation: Experiences from a Modeling Experiment
Denis Ssebuggwawo, Stijn Hoppenbrouwersand Henderik A. Proper (2013). International Journal of

Information System Modeling and Design (pp. 1-24).

www.irma-international.org/article/applying-ahp-collaborative-modeling-evaluation/75462

A Glossary of Business Sustainability Concepts
Arunasalam Sambhanthan (2022). Research Anthology on Agile Software, Software Development, and

Testing (pp. 67-83).

www.irma-international.org/chapter/a-glossary-of-business-sustainability-concepts/294459

Graph Classification Using Back Propagation Learning Algorithms
Abhijit Bera, Mrinal Kanti Ghoseand Dibyendu Kumar Pal (2020). International Journal of Systems and

Software Security and Protection (pp. 1-12).

www.irma-international.org/article/graph-classification-using-back-propagation-learning-algorithms/259417

Teaching Software Architecture in Industrial and Academic Contexts: Similarities and

Differences
Paolo Ciancariniand Stefano Russo (2018). Application Development and Design: Concepts,

Methodologies, Tools, and Applications (pp. 138-154).

www.irma-international.org/chapter/teaching-software-architecture-in-industrial-and-academic-contexts/188205

http://www.igi-global.com/chapter/a-survey-on-different-approaches-to-automating-the-design-phase-in-the-software-development-life-cycle/294482
http://www.igi-global.com/chapter/a-survey-on-different-approaches-to-automating-the-design-phase-in-the-software-development-life-cycle/294482
http://www.irma-international.org/chapter/survey-cardinality-constraints-snapshot-temporal/30012
http://www.irma-international.org/article/applying-ahp-collaborative-modeling-evaluation/75462
http://www.irma-international.org/chapter/a-glossary-of-business-sustainability-concepts/294459
http://www.irma-international.org/article/graph-classification-using-back-propagation-learning-algorithms/259417
http://www.irma-international.org/chapter/teaching-software-architecture-in-industrial-and-academic-contexts/188205

