
1511

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 72

DOI: 10.4018/978-1-6684-3702-5.ch072

ABSTRACT

Reusability is a clear principle in software development. However, systematic reuse of software elements
is not common in most organizations. Application programmers rarely design and create software ele-
ments for possible future reuse. In many agile software development processes, the project teams believe
that the development of reusable software elements can slow down the project. This can be a misconcep-
tion. This chapter examines various ways to reuse software. Three approaches to developing reusable
software artifacts from 15 years of experience in the agile development process are presented. The first
approach is to create generic programs or configurable frameworks that support similar solutions for a
variety of use cases and environments. The reuse of patterns is the second approach presented. Another
effective way is to use a model-driven approach with model patterns. These approaches help to speed
deployment software. The final product is flexible and can easily be adapted to changes. This is one of
the main goals of an agile approach.

INTRODUCTION

An experienced programmer would reuse his / her code written for another project whenever a similar
function is needed. In fact, people always use the same solution for similar problems. That is why expe-
rience can be very valuable. When implementing a new module, a veteran programmer, after years of
observation by the author, often cuts out code fragments from old modules that he / she has written and
inserts them into the new module. He / she is usually more efficient and productive as he / she already
has experience solving similar problems. Transforming this experience into a set of reusable elements
that anyone can use would bring great benefits to overall software development. That’s what software
reuse is all about.

Reuse in Agile
Development Process

Chung-Yeung Pang
 https://orcid.org/0000-0002-7925-4454

Seveco AG, Switzerland

1512

Reuse in Agile Development Process
﻿

With advances of software technologies, there are many packages and libraries containing reusable
software elements available commercially or open sources. Different business or system units from large
organizations usually provide business domain specific or infrastructure related software components
and functions (e.g. a function to retrieve customer data, etc.) for application development. Using these
software elements in application development forms the common practice of reuse. With decades of
experience working for many large organizations, the author finds that it is not a common practice for
application programmers to design and build software elements for possible future. When developers
have to meet deadlines and provide functionality, building software elements that can be reused is never
a priority. In fact, often one can find programs with hard coded values and algorithm that prevent them
from being reused in different context without code changes.

In recent years, the agile software development process has become very popular in the software
industry (Ambler, 2010; Larman, 2003). In this approach, the emphasis is on providing working software
with the highest business values ​​as a measure of the progress of a software project. It prefers function-
ing software over documentation and customer collaboration over contract negotiation. As a result, so
many developers are simply write ad hoc-style code, even though the agile approach does not exclude
the value of analysis and design. For many agile development teams, designing and building reusable
software elements are out of the question.

Although agile development practice has great advantages in software development, many projects
are still failing (Harlow, 2014; Ismail, 2017). When a software element has high reuse potential through
configuration and extension, it is flexible and easily adapt to changes. This actually fulfil the motivation
of agile software approach that the end system should be flexible and easy to change. The purpose of
this chapter to describe the techniques to design and build reusable software artefacts and demonstrate
that they bring many benefits. The development process to provide working software can be speeded
up. The end product is flexible and easily adaptable to changes, which is one of the main goals in using
an agile approach.

The chapter gives a brief survey of software reuse. It presents the general reusable software artefacts
with their motivation, implementation concept, consequences and applicability. Specific approaches to
develop reusable software artefacts that evolved out of 15 years of experience of agile development practice
are described. The approaches include those for “generic programming and configurable framework”,
“pattern based reuse” and “model driven approach”. The chapter is organized with a first section on the
background of agile software development and reusing software. It is followed by a section on reusable
software elements. The three approaches mentioned before will be described in three different sections.
The chapter ends with sections on the vision for the future and a final conclusion.

BACKGROUND

In the background, the first subsection deals with the history of software development and the agile ap-
proach. Following is a subsection on reuse based software engineering.

History of Software Development and Agile Approach

In the early days of software history, programmers tended to develop their programs without documen-
tation in an ad-hoc style. As software systems evolved with features over the years, they were no longer

22 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reuse-in-agile-development-process/294529

Related Content

Reuse across Multiple Architectures
Indika Kumaraand Chandana Gamage (2014). Software Design and Development: Concepts,

Methodologies, Tools, and Applications (pp. 1927-1955).

www.irma-international.org/chapter/reuse-across-multiple-architectures/77786

Execution Management for Mobile Service-Oriented Environments
Kleopatra G. Konstanteli, Tom Kirkham, Julian Gallop, Brian Matthews, Ian Johnson, Magdalini Kardaraand

Theodora Varvarigou (2012). Theoretical and Analytical Service-Focused Systems Design and

Development (pp. 62-82).

www.irma-international.org/chapter/execution-management-mobile-service-oriented/66793

Monitoring Buffer Overflow Attacks: A Perennial Task
Hossain Shahriarand Mohammad Zulkernine (2010). International Journal of Secure Software Engineering

(pp. 18-40).

www.irma-international.org/article/monitoring-buffer-overflow-attacks/46150

Reduction of Defect Misclassification of Electronic Board Using Multiple SVM Classifiers
Takuya Nakagawa, Yuji Iwahoriand M. K. Bhuyan (2014). International Journal of Software Innovation (pp.

25-36).

www.irma-international.org/article/reduction-of-defect-misclassification-of-electronic-board-using-multiple-svm-

classifiers/111448

Managing the Quality of UML Models in Practice
Ariadi Nugroho (2009). Model-Driven Software Development: Integrating Quality Assurance (pp. 1-36).

www.irma-international.org/chapter/managing-quality-uml-models-practice/26823

http://www.igi-global.com/chapter/reuse-in-agile-development-process/294529
http://www.irma-international.org/chapter/reuse-across-multiple-architectures/77786
http://www.irma-international.org/chapter/execution-management-mobile-service-oriented/66793
http://www.irma-international.org/article/monitoring-buffer-overflow-attacks/46150
http://www.irma-international.org/article/reduction-of-defect-misclassification-of-electronic-board-using-multiple-svm-classifiers/111448
http://www.irma-international.org/article/reduction-of-defect-misclassification-of-electronic-board-using-multiple-svm-classifiers/111448
http://www.irma-international.org/chapter/managing-quality-uml-models-practice/26823

