
1951

Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  93

DOI: 10.4018/978-1-6684-3702-5.ch093

ABSTRACT

Productivity is very important because it allows organizations to achieve greater efficiency and effec-
tiveness in their activities; however, it is affected by numerous factors. While these factors have been 
identified for over two decades, all of the previous works limited the software factory to the programming 
work unit and did not analyze other work units that are also relevant. 90% of a software factory’s effort 
is absorbed by the software production component, 85% of which is concentrated in the efforts of the 
analysis and design, programming, and testing work units. The present work identifies three new factors 
that influence the software factory, demonstrating that the use of rules and events influences analysis & 
design, team heterogeneity negatively affects analysis and design and positively affects programming; 
and the osmotic communication affects programming. An empirical study on software factories in Peru, 
determined that 95% of the influence came from these factors, which corroborated as well that team size 
and trust within the team influences in software production.

New Factors Affecting 
Productivity of the 
Software Factory

Pedro Castañeda
 https://orcid.org/0000-0003-1865-1293

Universidad Peruana de Ciencias Aplicadas (UPC), National University of San Marcos (UNMSM), 
Lima, Peru

David Mauricio
 https://orcid.org/0000-0001-9262-626X

National University of San Marcos, Lima, Peru



1952

New Factors Affecting Productivity of the Software Factory
﻿

INTRODUCTION

Cusumano (1989) defines a software factory as a company whose characteristics include large-scale 
software production, task standardization, control standardization, labor division, mechanization, automa-
tion, and the systematic application of the good practices of software engineering. The software factory 
offers great advantages, such as the ability to decrease production costs per product up to 60%, the time 
savings of putting a product on the market up to 98%, labor requirement reductions by up to 60%, the 
improvement of productivity by approximately 10 times, and the quality of each product with 10 times 
fewer of the errors. This increases the portfolio of products and services offered and the possibility of 
winning new markets (Clements & Northrop, 2001).

When measuring productivity, a software factory has indicators that allow for it to be compared in 
the market in a way that helps with the consideration of actions to increase the overall efficiency, which 
will allow for the use of all resources in an effective and efficient way in order to obtain the best possible 
results. A business needs to know how the organization is performing in relation to previous periods and 
its competitors and must ask questions such as the following. Is it increasing, decreasing, advancing, or 
receding? What is the magnitude of this progress or setback? Are the implemented strategies effective?

All models that measure productivity in a software factory consider various elements such as the 
processes, resources, units of measurement, etc., but often do not consider what affects people and how 
it impacts on the results of the productivity measurement. For example, the motivation and confidence 
in the team are factors that could have positive impacts on productivity, while in a demotivated team 
it could have the opposite effect (Yilmaz & O’Connor, 2011). This is the reason why studies are being 
conducted to identify the factors that affect productivity. However, the following is evident. (i) The factors 
identified are oriented to the Programming work unit, which could not be generalized to the software 
factory, given that it contemplates other work units and each unit has its own particularities. (ii) There 
are factors that influence productivity in other knowledge domains, but they have not been analyzed in 
the software factory.

In addition, previous studies have not considered that productivity is dependent upon various fac-
tors beyond inputs and outputs that influence the processes and context, among others (Arcudia-Abad, 
Solís-Carcaño & Cuesta-Santos, 2007; Nomura, Spinola, Hikage & Tonini, 2006).

In this article, the authors introduce new factors that affect productivity in software factories that are 
supported by theories including language action perspective, transactive memory theory, and good agile 
practices, such as time-boxing. In addition, we study how these factors affect the work units: Analysis 
& Design, Programming and Testing. To validate the influence of the introduced factors, 150 responses 
were collected and assessed of one survey published. The present work is part of a research study on 
productivity models for software factories.

This article is divided into seven sections. Section 2 presents the literature review about the software 
factory, productivity, and the factors that affect it. Section 3 details the proposed conceptual model and 
the elements that comprise it. Section 4 describes the research methodology and includes the strategy 
applied to obtain the information and analyze the results. Section 5 presents the results of the study. In 
Section 6, a discussion is established about the findings found in the validation. Finally, the conclusions 
are presented in Section 7.



 

 

27 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/new-factors-affecting-productivity-of-the-

software-factory/294552

Related Content

Security Evaluation of Service-Oriented Systems Using the SiSOA Method
Christian Jung, Manuel Rudolphand Reinhard Schwarz (2011). International Journal of Secure Software

Engineering (pp. 19-33).

www.irma-international.org/article/security-evaluation-service-oriented-systems/61151

Software Architecture Patterns in Big Data: Transition From Monolithic Architecture to

Microservices
Serkan Ayvazand Yucel Batu Salman (2020). Applications and Approaches to Object-Oriented Software

Design: Emerging Research and Opportunities  (pp. 90-110).

www.irma-international.org/chapter/software-architecture-patterns-in-big-data/249322

FTT: A System to Refactor Traditional Forms into Ajax-Enabled Forms
Ming Yingand James Miller (2011). International Journal of Systems and Service-Oriented Engineering (pp.

1-20).

www.irma-international.org/article/ftt-system-refactor-traditional-forms/61313

Fault Recognition for Mechanical Arm by Using Relative Margin SVM
Dongzhe Yang (2022). International Journal of Information System Modeling and Design (pp. 1-10).

www.irma-international.org/article/fault-recognition-for-mechanical-arm-by-using-relative-margin-svm/313576

Towards a Multi-Formalism Multi-Solution Framework for Model-Driven Performance

Engineering
Catalina M. Lladó, Pere Bonetand Connie U. Smith (2014). Theory and Application of Multi-Formalism

Modeling (pp. 34-55).

www.irma-international.org/chapter/towards-a-multi-formalism-multi-solution-framework-for-model-driven-performance-

engineering/91940

http://www.igi-global.com/chapter/new-factors-affecting-productivity-of-the-software-factory/294552
http://www.igi-global.com/chapter/new-factors-affecting-productivity-of-the-software-factory/294552
http://www.irma-international.org/article/security-evaluation-service-oriented-systems/61151
http://www.irma-international.org/chapter/software-architecture-patterns-in-big-data/249322
http://www.irma-international.org/article/ftt-system-refactor-traditional-forms/61313
http://www.irma-international.org/article/fault-recognition-for-mechanical-arm-by-using-relative-margin-svm/313576
http://www.irma-international.org/chapter/towards-a-multi-formalism-multi-solution-framework-for-model-driven-performance-engineering/91940
http://www.irma-international.org/chapter/towards-a-multi-formalism-multi-solution-framework-for-model-driven-performance-engineering/91940

