
 1883

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.6
Applying Social Network
Analysis Techniques to

Community-Driven Libre
Software Projects

Luis López-Fernández
Universidad Rey Juan Carlos, Spain

Gregorio Robles
Universidad Rey Juan Carlos, Spain

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos, Spain

Israel Herraiz
Universidad Rey Juan Carlos, Spain

ABStrAct

Source code management repositories of large,
long-lived libre (free, open source) software proj-
ects can be a source of valuable data about the
organizational structure, evolution, and knowl-
edge exchange in the corresponding development
communities. Unfortunately, the sheer volume of
the available information renders it almost unus-
able without applying methodologies which high-
light the relevant information for a given aspect
of the project. Such methodology is proposed in
this article, based on well known concepts from
the social networks analysis field, which can be
used to study the relationships among develop-
ers and how they collaborate in different parts

of a project. It is also applied to data mined from
some well known projects (Apache, GNOME,
and KDE), focusing on the characterization of
their collaboration network architecture. These
cases help to understand the potentials of the
methodology and how it is applied, but also shows
some relevant results which open new paths in
the understanding of the informal organization of
libre software development communities.

IntroductIon

Software projects are usually the collective
work of many developers. In most cases, and
especially in the case of large projects, those

1884

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

developers are formally organized in a well de-
fined (usually hierarchical) structure, with clear
guidelines about how to interact with each other,
and the procedures and channels to use. Each
team of developers is assigned certain modules
of the project, and only in rare cases do they
work outside that realm. However, this is usu-
ally not the case with libre software1 projects,
where only loose (if any) formal structures are
acknowledged. On the contrary, libre software
developers usually have access to any part of the
software, and even in the case of large projects,
they can move freely to a certain extent from
one module to other, with only some restric-
tions imposed by common usage in the project
and the rules on which developers themselves
have agreed to.

In fact, during the late 1990s some voices
started to claim that the success of some libre
software projects was rooted in this different
way of organization, which was referred to as
the “bazaar development model,” described by
Eric Raymond (1997) and later complemented
by some more formal models of nonhierarchical
coordination (Elliott & Scacchi, 2004; Healy &
Schussman, 2003). Some empirical studies have
found that many libre software projects cannot
follow this bazaar-style model, since they are
composed of just one or two developers (Healy
& Schussman, 2003; Krishnamurthy, 2002), but
the idea remains valid for large projects, with
tens or even hundreds of developers, where coor-
dination is obviously achieved, but (usually) not
by using formal procedures. These latter cases
have gained much attention from the software
engineering community during the last years, in
part because despite apparently breaking some
traditional premises (hard-to-find requirement
studies, apparently no internal structure, global
software development, etc.) final products of rea-
sonable quality are being delivered. Large libre
software projects are also suspicious of breaking
one of the traditional software evolution laws,
showing linear or even superlinear growth even

after reaching a size of several millions of lines
of code (Godfrey & Tu, 2000; Robles, Amor,
Gonzalez-Barahona, & Herraiz, 2005a). The laws
of software evolution state that the evolution of a
system is a self-regulating process that maintains
its organizational stability. Thus, unless feedback
mechanisms are appropriately introduced, the ef-
fective global activity tends to remain constant,
and incremental growth declines. The fact that
several studies on some large libre software
projects show evidence that some of these laws
are disobeyed may be indicative of an efficient
organizational structure.

On the other hand, the study of several large
libre software projects has shown evidence about
the unequal distribution of the contributions of
developers (Dinh-Trong & Bieman, 2005; Koch &
Schneider, 2002; Mockus, Fielding, & Herbsleb,
2002). These studies have identified roles within
the development community, and have discovered
that a large fraction of the development work is
done by a small group of about 15 persons, which
has been called the “core” group. The number
of developers is around one order of magnitude
larger, and the number of occasional bug report-
ers is again about one order of magnitude larger
than that of developers (Dinh-Trong & Bieman,
2005; Mockus et al., 2002). This is what has
been called the onion structure of libre software
projects (Crowston, Scozzi, & Buonocore, 2003).
In this direction, it has also been suggested that
large projects need to adopt policies to divide
the work, giving rise to smaller, clearly defined
projects (Mockus et al., 2002). This trend can be
observed in the organization of the CVS2 reposi-
tory of really large libre software projects, where
the code base is split into modules with their own
maintainers, goals, and so forth. Modules are
usually supposed to be built maintaining the inter-
relationships to a minimum, so that independent
evolution is possible (Germán, 2004a).

In this article, a new approach is explored in
order to study the informal structure and organi-
zation of the developers in large libre software

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/applying-social-network-analysis-

techniques/29484

Related Content

Analyzing Concurrent Programs Title for Potential Programming Errors
Qichang Chen, Liqiang Wang, Ping Guoand He Huang (2011). Modern Software Engineering Concepts

and Practices: Advanced Approaches (pp. 380-415).

www.irma-international.org/chapter/analyzing-concurrent-programs-title-potential/51981

On the Way from Research Innovations to Practical Utility in Enterprise Architecture: The Build-

Up Process
Islem Gmati, Irina Rychkovaand Selmin Nurcan (2010). International Journal of Information System

Modeling and Design (pp. 20-44).

www.irma-international.org/article/way-research-innovations-practical-utility/45924

An Empirical Study on the Network Model and the Online Knowledge Production Structure
Quan Chen, Jiangtao Wang, Ruiqiu Ouand Sang-Bing Tsai (2022). Research Anthology on Agile Software,

Software Development, and Testing (pp. 599-611).

www.irma-international.org/chapter/an-empirical-study-on-the-network-model-and-the-online-knowledge-production-

structure/294485

Developing Software with Domain-Driven Model Reuse
Audris Kalnins, Tomasz Straszak, Micha miaek, Elina Kalnina, Edgars Celmsand Wiktor Nowakowski

(2015). Handbook of Research on Innovations in Systems and Software Engineering (pp. 283-312).

www.irma-international.org/chapter/developing-software-with-domain-driven-model-reuse/117930

Parameterized Transformation Schema for a Non-Functional Properties Model in the Context of

MDE
Gustavo Millán García, Rubén González Crespoand Oscar Sanjuán Martínez (2014). Advances and

Applications in Model-Driven Engineering (pp. 268-288).

www.irma-international.org/chapter/parameterized-transformation-schema-non-functional/78619

http://www.igi-global.com/chapter/applying-social-network-analysis-techniques/29484
http://www.igi-global.com/chapter/applying-social-network-analysis-techniques/29484
http://www.irma-international.org/chapter/analyzing-concurrent-programs-title-potential/51981
http://www.irma-international.org/article/way-research-innovations-practical-utility/45924
http://www.irma-international.org/chapter/an-empirical-study-on-the-network-model-and-the-online-knowledge-production-structure/294485
http://www.irma-international.org/chapter/an-empirical-study-on-the-network-model-and-the-online-knowledge-production-structure/294485
http://www.irma-international.org/chapter/developing-software-with-domain-driven-model-reuse/117930
http://www.irma-international.org/chapter/parameterized-transformation-schema-non-functional/78619

