
 2865

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.15
Improving Credibility of

Machine Learner Models in
Software Engineering

Gary D. Boetticher
University of Houston – Clear Lake, USA

Abstract

Given a choice, software project managers fre-
quently prefer traditional methods of making
decisions rather than relying on empirical software
engineering (empirical/machine learning-based
models). One reason for this choice is the per-
ceived lack of credibility associated with these
models. To promote better empirical software
engineering, a series of experiments are conducted
on various NASA datasets to demonstrate the
importance of assessing the ease/difficulty of a
modeling situation. Each dataset is divided into
three groups, a training set, and “nice/nasty”
neighbor test sets. Using a nearest neighbor ap-
proach, “nice neighbors” align closest to same
class training instances. “Nasty neighbors” align
to the opposite class training instances. The “nice”,
“nasty” experiments average 94% and 20% ac-
curacy, respectively. Another set of experiments

show how a ten-fold cross-validation is not suf-
ficient in characterizing a dataset. Finally, a set
of metric equations is proposed for improving
the credibility assessment of empirical/machine
learning models.

Introduction

Software Project Management:
State-of-Practice

Software project management has improved over
the years. For example, the Standish Group, a
consulting company, which has been studying
IT management since 1994 noted in their latest
release of the Chaos Chronicles (The Standish
Group, 2003) that, “2003 Project success rates
improved by more than 100 percent over the 16
percent rate from 1994.” Furthermore, “Project

2866

Improving Credibility of Machine Learner Models in Software Engineering

failures in 2003 declined to 15 percent of all
projects. This is a decrease of more than half of
the 31 percent in 1994.”

Even with these successes, there are still
significant opportunities for improvement in
software project management. Table 1 shows
several “state-of-practice” surveys collected in
2003 from IT companies in the United States (The
Standish Group, 2003); South Africa (Sonnekus
& Labuschagne, 2003); and the United Kingdom
(Sauer & Cuthbertson, 2003).

According to the Chaos Chronicles (The
Standish Group, 2003), successful projects refers
to projects that are completed on time and within
budget with all features fully implemented; project
challenged means that the projects are completed,
but exceed budget, go over time, and/or are lack-
ing some/all of the features and functions from
the original specifications; and project failures
are those projects which are abandoned and/or
cancelled at some point.

Applying a weighted average to Table 1 results
in 34% of the projects identified as successful,
50% are challenged, and 16% end up in failure.
Thus, about one-third of the surveyed projects end
up as a complete success, half the projects fail to
some extent, and one sixth end up as complete
failures. Considering the role of computers in vari-
ous industries, such as the airlines and banking,
these are alarming numbers.

From a financial perspective,1 the lost dollar
value for U.S. projects in 2002 is estimated at $38
billion with another $17 billion in cost overruns
for a total project waste of $55 billion against $255

billion in project spending (The Standish Group,
2003). Dalcher and Genus (2003) estimate the
cost for low success rates at $150 billion per year
attributable to wastage arising from IT project
failures in the Unites States, with an additional
$140 billion in the European Union. Irrespective
of which estimate is adopted, it is evident that
software project mismanagement results in an
annual waste of billions of dollars.

Empirical Software Engineering

One of the keys for improving the chances of
project development success is the application of
empirical-based software engineering. Empiri-
cal-based software engineering is the process
of collecting software metrics and using these
metrics as a basis for constructing a model to
help in the decision-making process.

Two common types of software metrics are
project and product metrics. Project metrics refer
to the estimated time, money, or resource effort
needed in completing a software project. The
Standish Group (2003) perceives software cost
estimating as the most effective way to avoid cost
and schedule. Furthermore, several studies (Jones,
1998; The Standish Group, 2003) have shown that
by using software cost-estimation techniques, the
probability of completing a project successfully
doubles. Thus, estimating the schedule, cost, and
resources needed for the project is paramount for
project success.

Product metrics are metrics extracted from
software code and are frequently used for soft-

Table 1. State-of-practice surveys

Year Successful Challenged Failure Projects Surveyed

United States (Chaos Chronicles III) 34% 51% 15% 13,522

South Africa 43% 35% 22% 1,633

United Kingdom 16% 75% 9% 421

16 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/improving-credibility-machine-learner-

models/29540

Related Content

Domain-Specific Language Integration with C++ Template Metaprogramming
Ábel Sinkovicsand Zoltán Porkoláb (2013). Formal and Practical Aspects of Domain-Specific Languages:

Recent Developments (pp. 32-55).

www.irma-international.org/chapter/domain-specific-language-integration-template/71815

Linking Natural Modeling to Techno-centric Modeling for the Active Involvement of Process

Participants in Business Process Design
Stefan Oppland Nancy Alexopoulou (2016). International Journal of Information System Modeling and

Design (pp. 1-30).

www.irma-international.org/article/linking-natural-modeling-to-techno-centric-modeling-for-the-active-involvement-of-

process-participants-in-business-process-design/162694

Risk Management Metrics
Rimsy Dua, Samiksha Sharmaand Rohit Kumar (2022). Research Anthology on Agile Software, Software

Development, and Testing (pp. 56-66).

www.irma-international.org/chapter/risk-management-metrics/294458

Resource Analysis and Classification for Purpose Driven Value Model Design
Paul Johannesson, Birger Anderssonand Hans Weigand (2010). International Journal of Information

System Modeling and Design (pp. 56-78).

www.irma-international.org/article/resource-analysis-classification-purpose-driven/40953

Integrating Software Engineering and Costing Aspects within Project Management Tools
Roy Gelbard, Jeffrey Kantorand Liran Edelist (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications (pp. 1358-1374).

www.irma-international.org/chapter/integrating-software-engineering-costing-aspects/29450

http://www.igi-global.com/chapter/improving-credibility-machine-learner-models/29540
http://www.igi-global.com/chapter/improving-credibility-machine-learner-models/29540
http://www.irma-international.org/chapter/domain-specific-language-integration-template/71815
http://www.irma-international.org/article/linking-natural-modeling-to-techno-centric-modeling-for-the-active-involvement-of-process-participants-in-business-process-design/162694
http://www.irma-international.org/article/linking-natural-modeling-to-techno-centric-modeling-for-the-active-involvement-of-process-participants-in-business-process-design/162694
http://www.irma-international.org/chapter/risk-management-metrics/294458
http://www.irma-international.org/article/resource-analysis-classification-purpose-driven/40953
http://www.irma-international.org/chapter/integrating-software-engineering-costing-aspects/29450

