
 2915

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Deductive semantics is a novel software semantic
theory that deduces the semantics of a program in
a given programming language from a unique ab-
stract semantic function to the concrete semantics
embodied by the changes of status of a finite set
of variables constituting the semantic environ-
ment of the program. There is a lack of a generic
semantic function and its unified mathematical
model in conventional semantics, which may be
used to explain a comprehensive set of program-
ming statements and computing behaviors. This
article presents a complete paradigm of formal
semantics that explains how deductive semantics
is applied to specify the semantics of real-time
process algebra (RTPA) and how RTPA challenges
conventional formal semantic theories. Deductive
semantics can be applied to define abstract and
concrete semantics of programming languages,
formal notation systems, and large-scale software

systems, to facilitate software comprehension
and recognition, to support tool development, to
enable semantics-based software testing and veri-
fication, and to explore the semantic complexity
of software systems. Deductive semantics may
greatly simplify the description and analysis of
the semantics of complicated software systems
specified in formal notations and implemented in
programming languages.

IntroductIon

Semantics in linguistics is a domain that studies
the interpretation of words and sentences, and
analysis of their meanings. Semantics deals with
how the meaning of a sentence in a language is
obtained, hence the sentence is comprehended.
Studies on semantics explore mechanisms in the
understanding of languages and their meanings on
the basis of syntactic structures (Chomsky, 1956,

Chapter 7.18
Deductive Semantics of RTPA

Yingxu Wang
University of Calgary, Canada

2916

Deductive Semantics of RTPA

1957, 1959, 1962, 1965, 1982; Tarski, 1944).
Software semantics in computing and compu-

tational linguistics have been recognized as one of
the key areas in the development of fundamental
theories for computer science and software engi-
neering (Bjoner, 2000; Gries, 1981; Hoare, 1969;
McDermid, 1991; Slonneg & Kurts, 1995; Wang,
2006b, 2007c). The semantics of a programming
language is the behavioral meaning that constitute
what a syntactically correct instructional state-
ment in the language is supposed to do during
run time. The development of formal semantic
theories of programming is one of the pinnacles
of computing and software engineering (Gunter,
1992; Meyer, 1990; Louden, 1993; Bjoner, 2000;
Pagan, 1981).

Definition 1. The semantics of a program in a
given programming language is the logical conse-
quences of an execution of the program that results
in the changes of values of a finite set of variables
and/or the embodiment of computing behaviors in
the underpinning computing environment.

A number of formal semantics, such as the
operational (Marcotty & Ledgard, 1986; Ollon-
gren, 1974; Wegner, 1972; Wikstrom, 1987), de-
notational (Bjorner and Jones, 1982; Jones, 1980;
Schmidt, 1988, 1994, 1996; Scott, 1982; Scott &
Strachey, 1971), axiomatic (Dijktra, 1975, 1976;
Gries, 1981; Hoare, 1969), and algebraic (Goguen,
Thatcher, Wagner, & Wright, 1977; Gougen &
Malcolm, 1996; Guttag & Horning, 1978), have
been proposed in the last three decades for defining
and interpreting the meanings of programs and
programming languages. The classic software
semantics are oriented on a certain set of software
behaviors that are limited at the level of language
statements rather than that of programs and soft-
ware systems. There is a lack of a generic semantic
function and its unified mathematical model in
conventional semantics, which may be used to
explain a comprehensive set of programming
statements and computing behaviors. The math-

ematical models of the target machines and the
semantic environments in conventional semantics
seem to be inadequate to deal with the semantics
of complex programming requirements, and to
express some important instructions, complex
control structures, and the real-time environ-
ments at run time. For supporting systematical
and machine enabled semantic analysis and code
generation in software engineering, the deductive
semantics is developed that provides a systematic
semantic analysis methodology.

Deduction is a reasoning process that discovers
new knowledge or derives a specific conclusion
based on generic premises such as abstract rules
or principles (Wang, 2006b, 2007a, 2007c). The
nature of semantics of a given programming
language is its computational meanings or em-
bodied behaviors expressed by an instruction in
the language. Because the carriers of software
semantics are a finite set of variables declared
in a given program, program semantics can be
reduced onto the changes of values of these
variables over time. In order to provide a rigor-
ous mathematical treatment of both the abstract
and concrete semantics of software, a new type
of formal semantics known as the deductive se-
mantics is presented.

Definition 2. Deductive semantics is a formal
semantics that deduces the semantics of a pro-
gram in a given programming language from a
generic abstract semantic function to the concrete
semantics, which are embodied onto the changes
of status of a finite set of variables constituting
the semantic environment of computing.

This article presents a comprehensive theory
of deductive semantics of software systems. The
mathematical models of deductive semantics and
the fundamental properties are described. The
deductive models of semantics, semantic function,
and semantic environment at various composing
levels of programs are introduced. Properties of
software semantics and relationships between

26 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/deductive-semantics-rtpa/29543

Related Content

Smart Black Box DVR System in IT-Based Vehicle Emergency Rescue Environment
Sun-O Choiand Jongbae Kim (2022). International Journal of Software Innovation (pp. 1-10).

www.irma-international.org/article/smart-black-box-dvr-system-in-it-based-vehicle-emergency-rescue-

environment/309961

A Lightweight Measurement of Software Security Skills, Usage and Training Needs in Agile

Teams
Tosin Daniel Oyetoyan, Martin Gilje Jaatunand Daniela Soares Cruzes (2017). International Journal of

Secure Software Engineering (pp. 1-27).

www.irma-international.org/article/a-lightweight-measurement-of-software-security-skills-usage-and-training-needs-in-

agile-teams/179641

A Systematic Review of Distributed Software Development: Problems and Solutions
Miguel Jiménez, Mario Piattiniand Aurora Vizcaíno (2010). Handbook of Research on Software Engineering

and Productivity Technologies: Implications of Globalization (pp. 209-225).

www.irma-international.org/chapter/systematic-review-distributed-software-development/37034

Integrating Quality Criteria and Methods of Evaluation for Software Models
Anna E. Bobkowska (2009). Model-Driven Software Development: Integrating Quality Assurance (pp. 78-

94).

www.irma-international.org/chapter/integrating-quality-criteria-methods-evaluation/26826

Case Study of Software Reviews
Yuk Kuen Wong (2006). Modern Software Review: Techniques and Technologies (pp. 253-267).

www.irma-international.org/chapter/case-study-software-reviews/26907

http://www.igi-global.com/chapter/deductive-semantics-rtpa/29543
http://www.irma-international.org/article/smart-black-box-dvr-system-in-it-based-vehicle-emergency-rescue-environment/309961
http://www.irma-international.org/article/smart-black-box-dvr-system-in-it-based-vehicle-emergency-rescue-environment/309961
http://www.irma-international.org/article/a-lightweight-measurement-of-software-security-skills-usage-and-training-needs-in-agile-teams/179641
http://www.irma-international.org/article/a-lightweight-measurement-of-software-security-skills-usage-and-training-needs-in-agile-teams/179641
http://www.irma-international.org/chapter/systematic-review-distributed-software-development/37034
http://www.irma-international.org/chapter/integrating-quality-criteria-methods-evaluation/26826
http://www.irma-international.org/chapter/case-study-software-reviews/26907

