
3294

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.7
Bridging the Gap between Agile
and Free Software Approaches:

The Impact of Sprinting

Paul J. Adams
Sirius Corporation Ltd., UK

Andrea Capiluppi
University of Lincoln, UK

AbstrAct

Agile sprints are short events where a small team
collocates in order to work on particular aspects
of the overall project for a short period of time.
Sprinting is a process that has been observed
also in Free Software projects: these two para-
digms, sharing common principles and values
have shown several commonalities of practice.
This article evaluates the impact of sprinting
on a Free Software project through the analysis
of code repository logs: sprints from two Free
Software projects (Plone and KDE PIM) are as-
sessed and two hypotheses are formulated: do
sprints increase productivity? Are Free Software
projects more productive after sprints compared
with before? The primary contribution of this
article is to show how sprinting creates a large
increase in productivity both during the event,

and immediately after the event itself: this argues
for more in-depth studies focussing on the nature
of sprinting.

IntroductIon

Agile and Free Software development have
received rapid growth in popularity, both as
development paradigms and as research topics.
In theory they are very different concepts; the
latter, strictly speaking, being just a licensing
paradigm with implications for code reuse and
redistribution.

The interface between Agile and Free Software
is very interesting and a fertile area in which not
much rigorous research has been carried out to
date. Some comparative studies have been made
in the past, but given the scarcity of data from

 3295

Bridging the Gap between Agile and Free Software Approaches

Agile processes, most of the studies have remained
on the surface of theoretical discussions (Koch,
2004)(Warsta and Abrahamsson, 2003). Empirical
attempts have been also made to measure, on an
empirical basis, the degree of agility within other
development paradigms (Adams, Capiluppi and
deGroot, 2008).

This article examines and compares the Free
Software and Agile approaches by observing
typical Agile practices when deployed within
Free Software teams: in particular, it reports on
the Plone and KDE PIM projects, where sprinting
(Beck, 1999) is commonly used by developers
to focus the activity for a limited period of time.
Sprinting allows developers to meet in person,
get to know each other and create the basis for
collaborating more effectively in a distributed
environment (During, 2006). In previous works,
the PyPy and the Zope projects have been reported
to use sprinting regularly within their projects
(Sigfridsson, Avram, Sheehan and Sullivan,
2007), and its use is advocated as an “applied
(...) idea of Agile development to the very difficult
problem of distributed software development”
(Goth, 2007).

What past literature has not provided yet is a
quantitative evaluation of the impact of sprinting
on productivity of developers: what has instead
been reported is that traditional productivity

metrics could fail in capturing the effects of the
interactions among developers within sprints
(Goth, 2007). In order to tackle this issue, this
article explores the use of automatic measures
to determine the productivity of developers both
before and after the sprinting efforts. A research
hypothesis has been formulated as follows: when
quantitatively evaluating sprinting, the productiv-
ity of developers will display higher values after a
sprint than before it. If the null hypothesis can be
rejected, this result could prove useful to others in
the Free Software communities, encouraging them
to adopt this practice and to focus their efforts
within a constrained period of time to increase
their productivity.

This article is structured as follows: Section
2 introduces the context of the work, explaining
how the Agile and Free Software paradigms share
some of their process characteristics. Section 3
reports on the methodology, the attributes and the
definitions used throughout the article. Section 4
describes how sprinting is accomplished within
the two reported case studies, while Section 5
summarises the main findings of measuring the
effects of sprinting on developers productivity.
Since this work reports on empirical analysis of
public data, Section 6 will report on the threats to
validity. Finally Section 7 will conclude the article,
and illustrate avenues of further research.

Figure 1. The open development model

Passive Users

Active Users

Co-Developers

Core Developers

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/bridging-gap-between-agile-free/29562

Related Content

A Holistic Trust Management Leasing Algorithm for IaaS Cloud
Hemant Kumar Mehtaand Rohit Ahuja (2014). International Journal of Systems and Service-Oriented

Engineering (pp. 1-12).

www.irma-international.org/article/a-holistic-trust-management-leasing-algorithm-for-iaas-cloud/114603

Low-Overhead Development of Scalable Resource-Efficient Software Systems
Wei-Chih Huangand William J. Knottenbelt (2014). Handbook of Research on Emerging Advancements

and Technologies in Software Engineering (pp. 81-105).

www.irma-international.org/chapter/low-overhead-development-of-scalable-resource-efficient-software-systems/108612

A Sequential Comparative Analysis of Software Change Proneness Prediction Using Machine

Learning
Raja Abbasand Fawzi Abdulaziz Albalooshi (2022). International Journal of Software Innovation (pp. 1-16).

www.irma-international.org/article/a-sequential-comparative-analysis-of-software-change-proneness-prediction-using-

machine-learning/297993

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented

Architecture
Hiroshi Wada, Junichi Suzukiand Katsuya Oba (2009). Software Applications: Concepts, Methodologies,

Tools, and Applications (pp. 942-974).

www.irma-international.org/chapter/model-driven-development-framework-non/29429

Software Development Methodologies for Cloud Computing
Izzat Alsmadi (2013). Software Development Techniques for Constructive Information Systems Design (pp.

110-117).

www.irma-international.org/chapter/software-development-methodologies-cloud-computing/75743

http://www.igi-global.com/chapter/bridging-gap-between-agile-free/29562
http://www.irma-international.org/article/a-holistic-trust-management-leasing-algorithm-for-iaas-cloud/114603
http://www.irma-international.org/chapter/low-overhead-development-of-scalable-resource-efficient-software-systems/108612
http://www.irma-international.org/article/a-sequential-comparative-analysis-of-software-change-proneness-prediction-using-machine-learning/297993
http://www.irma-international.org/article/a-sequential-comparative-analysis-of-software-change-proneness-prediction-using-machine-learning/297993
http://www.irma-international.org/chapter/model-driven-development-framework-non/29429
http://www.irma-international.org/chapter/software-development-methodologies-cloud-computing/75743

