
 3399

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.14
Reducing the Complexity

of Modeling Large Software
Systems

Jules White
Vanderbilt University, USA

Douglas C. Schmidt
Vanderbilt University, USA

Andrey Nechypurenko
Siemens AG, Germany

Egon Wuchner
Siemens AG, Germany

AbstrAct

Model-driven development is one approach to
combating the complexity of designing software
intensive systems. A model-driven approach al-
lows designers to use domain notations to specify
solutions and domain constraints to ensure that the
proposed solutions meet the required objectives.
Many domains, however, require models that are
either so large or intricately constrained that it is
extremely difficult to manually specify a correct
solution. This chapter presents an approach to
provide that leverages a constraint solver to pro-

vide modeling guidance to a domain expert. The
chapter presents both a practical framework for
transforming models into constraint satisfaction
problems and shows how the Command Pattern
can be used to integrate a constraint solver into
a modeling tool.

IntroductIon

Model-driven development (MDD) (Ledeczi,
2001a; Kent, 2002; Kleppe, Bast, & Warmer,
2003; Selic, 2003) is a promising paradigm for

3400

Reducing the Complexity of Modeling Large Software Systems

software development that combines high-level
visual abstractions—specific to a domain—with
constraint checking and code-generation to sim-
plify the development of a large class of systems
(Sztipanovits & Karsai, 1997). MDD tools and
techniques help improve software quality by
automating constraint checking (Sztipanovits
& Karsai, 1997). For example, in developing a
software system for an automobile, automated
constraint checking can be performed by the
MDD tool to ensure that components connected
by the developer, such as the antilock braking
system and wheel RPM sensors, send messages
to each other using the correct periodicity. An
advantage of model-based constraint checking
is that it expands the range of development er-
rors that can be caught at design time rather than
during testing.

Compilers for third-generation languages
(e.g., Java, C++, or C#) can be viewed as a form
of model-driven development (Atkinson & Kuhne,
2003). A compiler takes the third-generation pro-
gramming language instructions (model), checks
the code for errors (e.g., syntactic or semantic
mistakes), and then produces implementation
artifacts (e.g., assembly, byte, or other executable
codes). A compiler helps catch mistakes during the
development phrase and automates the translation
of the code into an executable form.

Domain-specific Modeling Languages
(DSML) (Ledeczi, 2001a) are one approach to
MDD that use a language custom designed for
the domain to model solutions. A metamodel is
developed that describes the semantic type sys-
tem of the DSML. Model interpreters traverse
instances of models that conform to the metamodel
and perform simulation, analysis, or code genera-
tion. Modelers can use a DSML to more precisely
describe a domain solution, because the modeling
language is custom designed for the domain.

MDD tools for DSMLs accrue the same
advantages as compilers for third-generation
languages. Rather than specifying the solution in
terms of third-generation programming languages

or other implementation-focused terminology,
however, MDD allows developers to use notations
specific to the domain. With a third-generation
programming language approach (such as speci-
fying the solution in C++), high-level informa-
tion (such as messaging periodicity or memory
consumption) is lost. Because a C++ compiler
does not understand messaging periodicity (i.e.,
it is not part of the “domain” of C++ programs)
it cannot check that two objects communicate at
the correct rate.

With an MDD-based approach, in contrast,
DSML developers determine the granularity of
the information captured in the model. High-level
information like messaging periodicity can be
maintained in the solution model and used for
error checking. By raising the level of abstrac-
tion for expressing design intent, more complex
requirements can be checked automatically by
the MDD tool and assured at design time rather
than testing time (Sztipanovits & Karsai, 1997), as
seen in Figure 1. In general, errors caught during
the design cycle are much less time consuming
to identify and correct than those found during
testing (Fagan, 1999).

As model-based tools and methodologies
have developed, however, it has become clear
that there are domains where the models are so
large and the domain constraints so intricate that
it is extremely hard for modelers to handcraft
correct or high quality models. In these domains,
MDD tools that provide only solution-correctness
checking via constraints provide few real benefits
over the third-generation programming language
approach. Even though higher-level requirements
can be captured and enforced, developers must
still find ways of manually constructing a model
that adheres to these requirements.

Distributed real-time and embedded (DRE)
systems are software intensive systems that
require guaranteed execution properties (e.g.,
deadlines), communication across a network, or
must operate with extremely limited resources.
Examples of DRE systems include automobile

29 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/reducing-complexity-modeling-large-

software/29569

Related Content

Measuring Local Economy Efficiency With Two-Stage Bootstrap DEA: Evidence From Municipal

Currency in South Korea
Hee Jay Kang, Changhee Kimand Jiyoon Son (2022). International Journal of Software Innovation (pp. 1-

14).

www.irma-international.org/article/measuring-local-economy-efficiency-with-two-stage-bootstrap-dea/309964

Deep Learning-Based Tomato's Ripe and Unripe Classification System
Prasenjit Das, Jay Kant Pratap Singh Yadavand Laxman Singh (2022). International Journal of Software

Innovation (pp. 1-20).

www.irma-international.org/article/deep-learning-based-tomatos-ripe-and-unripe-classification-system/292023

Reuse across Multiple Architectures
Indika Kumaraand Chandana Gamage (2012). Software Reuse in the Emerging Cloud Computing Era (pp.

107-135).

www.irma-international.org/chapter/reuse-across-multiple-architectures/65169

Evolution of Blockchain Technology: Principles, Research Trends and Challenges, Applications,

and Future Directions
Oluwaleke Umar Yusufand Maki K. Habib (2023). Perspectives and Considerations on the Evolution of

Smart Systems (pp. 67-104).

www.irma-international.org/chapter/evolution-of-blockchain-technology/327527

Project Contexts and the Possibilities for Mixing Software Development and Systems

Approaches
D. Petkov, S. Alter, J. Wing, A. Singh, O. Petkova, T. Andrewand K. Sewchurran (2014). Software Design

and Development: Concepts, Methodologies, Tools, and Applications (pp. 335-350).

www.irma-international.org/chapter/project-contexts-possibilities-mixing-software/77713

http://www.igi-global.com/chapter/reducing-complexity-modeling-large-software/29569
http://www.igi-global.com/chapter/reducing-complexity-modeling-large-software/29569
http://www.irma-international.org/article/measuring-local-economy-efficiency-with-two-stage-bootstrap-dea/309964
http://www.irma-international.org/article/deep-learning-based-tomatos-ripe-and-unripe-classification-system/292023
http://www.irma-international.org/chapter/reuse-across-multiple-architectures/65169
http://www.irma-international.org/chapter/evolution-of-blockchain-technology/327527
http://www.irma-international.org/chapter/project-contexts-possibilities-mixing-software/77713

