
 ��

Chapter II
Constructive Alignment in

SE Education:
Aligning to What?

Jocelyn Armarego
Murdoch University, Western Australia

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbsTRACT

Practitioner studies suggest that formal IT-related education is not developing the skills and knowledge
needed by graduates in daily work. In particular, a shift in focus from technical competency to the soft
and metacognitive skills is identified. This chapter argues that a framework for learning can be developed
that more closely models the experiences of practitioners, and addresses their expectations of novice
software engineers. Evaluation of a study incorporating three action research cycles shows that what is
needed is a mapping between the characteristics of professional practice and the learning model that
is applied. The research shows that a relationship also exists between learner and learning model, and
that this relationship can be exploited in the development of competent discipline practitioners.

INTRODUCTION

In the late 1960s those involved in the develop-
ment of software agreed that one mechanism for
dealing with intrinsic difficulties (eg complexity,
(in)visibility, and changeability (Brooks, 1986))
was to embed its production within an applied
science environment. Royce (1970) was the first
to note explicitly that an engineering approach
was required. The implication of this alignment

was that, like other engineering endeavours,
methods, tools and procedures must be applied
in a systematic way to contribute to the overall
purpose of the process, control it and enable the
development of a quality product.

This interest in engineering is mirrored in the
education of software developers, with initially an
exponential growth in offerings of undergraduate
software degrees within an engineering envi-
ronment. Increasingly, education for software

��

Constructive Alignment in SE Education

development focuses on process and repeatability,
modelling scientific and engineering methodolo-
gies. The underlying assumption of this approach
is that ‘good’ software development is achieved
by applying scientific investigative techniques
(Pfleeger, 1999).

Practitioner-based studies (eg., Trauth, Far-
well, & Lee, 1993; Lethbridge, 2000; Lee, 2004)
assist us in building a profile of a practicing IT
professional. The synthesis of these is that the
skills and knowledge required to be active as
competent practitioners are multidisciplinary:
industry requires professionals who integrate
into the organisational structure, and, rather than
cope specifically with today’s perceived problems,
have models, skills and analytical techniques
that allow them to evaluate and apply appropri-
ate emerging technologies and to manage the
process of delivering solutions. More broadly,
software technology is seen as a rapidly shifting
landscape: new methods, tools, platforms, user
expectations, and software markets underscore
the need for education that provides professionals
with the ability to adapt quickly.

Developing Education-
Learner-Practitioner Alignments1

Freed (1992) coined the term ‘relentless inno-
vation’ to describe the capacity to invent and
implement new ideas that will impact on every
facet of life. Oliver (2000) suggested the rate of
innovation is so prolific that most of the knowl-
edge which will be used by the end of the first
decade of the twenty-first century has yet to
be invented. The speed with which technology
evolves, the multiplicity of its impact on society
and the ramifications of that impact mean that
metacognitive and knowledge construction skills
as well as adaptability become vital for profes-
sionals working with technology. Professional
practitioners with such skills become agents of
change (Garlan, Gluch, & Tomayko, 1997).

However, the basic features of most engineer-
ing training programmes have hardly been chal-
lenged since engineering schools were established
(Mulder, 2006). In general this education is based
on a normative professional education curriculum,
in which students first study basic science, then
the relevant applied science (Waks, 2001), so
that learning may be viewed as a progression to
expertise through task analysis, strategy selection,
try-out and repetition (Winn & Snyder, 1996). The
risk is that strict adherence to engineering and
science methodologies hampers the quintessential
creativity of the design process for software (Lu-
bars, Potts, & Richer, 1993; Maiden & Gizikis,
2001; Maiden & Sutcliffe, 1992; Thomas, Lee,
& Danis, 2002).

The aim of this chapter therefore is to explore
the degree of alignment between the actuality of
practice in the discipline and the models of learn-
ing provided in formal education for software
development. An overview of both the dominant
pedagogy for formal education in IT disciplines,
and practitioner studies undertaken over the last
15 years establishes a base for this exploration.

An Action Research project, undertaken within
Murdoch University’s Software Engineering (SE)
programme, provided the context for developing
a model for alignment between formal education
for SE and industry requirements. In order to
achieve this, several techniques, including cur-
riculum mapping and discipline decoding, were
applied during the project to establish and then
evaluate the alignments identified. The chapter
continues by exploring the importance of align-
ment between student and learning environment,
so that the eventual outcome, affinity between
discipline, learning environment and graduate
practitioner may be achieved.

CONTEXT

The context for the Action Research2 project was
the SE programme within the School of Engineer-

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/constructive-alignment-education/29591

Related Content

A Mobile Game Algorithm for Programming Education
SunMyung Hwangand Hee Gyun Yeom (2022). International Journal of Software Innovation (pp. 1-10).

www.irma-international.org/article/a-mobile-game-algorithm-for-programming-education/289592

A Typology of Firms Regarding M-Commerce Adoption
Sonia San-Martínand Nadia Jiménez (2015). International Journal of Information System Modeling and

Design (pp. 42-56).

www.irma-international.org/article/a-typology-of-firms-regarding-m-commerce-adoption/142515

A Survey on Brain Tumor Segmentation and Classification
T.A. Jemimmaand Y. Jacob Vetharaj (2022). International Journal of Software Innovation (pp. 1-21).

www.irma-international.org/article/a-survey-on-brain-tumor-segmentation-and-classification/309721

Reliability Modeling and Assessment for Open Source Cloud Software: A Stochastic Approach
Yoshinobu Tamuraand Shigeru Yamada (2014). Handbook of Research on Architectural Trends in Service-

Driven Computing (pp. 718-742).

www.irma-international.org/chapter/reliability-modeling-and-assessment-for-open-source-cloud-software/115451

Social Structure Based Design Patterns for Agent-Oriented Software Engineering
Manuel Kolp, Stéphane Faulknerand Yves Wautelet (2009). Software Applications: Concepts,

Methodologies, Tools, and Applications (pp. 773-796).

www.irma-international.org/chapter/social-structure-based-design-patterns/29421

http://www.igi-global.com/chapter/constructive-alignment-education/29591
http://www.irma-international.org/article/a-mobile-game-algorithm-for-programming-education/289592
http://www.irma-international.org/article/a-typology-of-firms-regarding-m-commerce-adoption/142515
http://www.irma-international.org/article/a-survey-on-brain-tumor-segmentation-and-classification/309721
http://www.irma-international.org/chapter/reliability-modeling-and-assessment-for-open-source-cloud-software/115451
http://www.irma-international.org/chapter/social-structure-based-design-patterns/29421

