
 61

Chapter IV
Tasks in Software Engineering

Education:
The Case of a Human Aspects of

Software Engineering Course

Orit Hazzan
Technion - IIT, Israel

Jim Tomayko
Carnegie Mellon University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

The field of software engineering is multifaceted. Accordingly, students must be educated to cope with
different kinds of tasks and questions. This chapter describes a collection of tasks that aim at improving
students' skills in different ways. We illustrate our ideas by describing a course about human aspects of
software engineering. The course objective is to increase learners' awareness with respect to problems,
dilemmas, ethical questions, and other human-related situations that students may face in the software
engineering world. We attempt to achieve this goal by posing different kinds of questions and tasks to
the learners, which aim at enhancing their abstract thinking and expanding their analysis perspectives.
The chapter is based on our experience teaching the course at Carnegie-Mellon University and at the
Technion – Israel Institute of Technology.

Introduction

The complexity of software development environ-
ments is well known. This complexity includes
technical aspects (such as IDEs and programming
languages), cognitive aspects (for example, pro-

gram comprehension) and social aspects of the
profession (e.g., issues related to teamwork). As
a result of this multifaceted nature, the discipline
of software engineering requires that special at-
tention be given to tasks executed by software
engineering students.

62

Tasks in Software Engineering Education

This chapter presents a collection of tasks
that can be integrated into software engineering
education. The tasks presented here do not address
software development activities (such as design
or coding) but rather belong to peripheral topics
related to the actual development of software.
We suggest, however, that the discussion of these
topics, when supported by students’ engaging in a
variety of tasks, has a direct influence on students’
professional skills in general, and on their software
development performance in particular.

We illustrate our ideas using a course on human
aspects of software engineering. The course objec-
tive is to increase software engineering students’
awareness of (a) the richness and complexity of
various facets of the human aspect of software
engineering and (b) problems, dilemmas, ques-
tions and conflicts that may arise with respect to
human aspects of software engineering during
the course of software development. The course
is based on Tomayko and Hazzan (2004), and the
tasks presented can be adapted to any software
engineering course.

The Human Aspects of Software Engineering
course is usually attended by senior undergraduate
students or graduate students who already have
some software development experience. Being an
elective course, it is usually taught in a relatively
small class setting. Indeed, as illustrated later on
in the chapter, these course characteristics enable
us to propose an interactive, hands-on and active
teaching and learning style.

The importance attributed to active learning is
based on the constructivist approach. Construc-
tivism is a cognitive theory that examines the
nature of learning processes. According to this
approach, learners construct new knowledge by
rearranging and refining their existing knowledge
(cf. Davis, Maher and Nodding, 1990; Smith,
diSessa and Roschelle, 1993). More specifically,
the constructivism approach suggests that new
knowledge is constructed gradually, based on the
learner’s existing mental structures and on feed-
back that the learner receives from the learning

environments. In this process, mental structures
are developed in steps, each elaborating on the
preceding ones; although, there may, of course,
also be regressions and “blind alleys”. This con-
struction process is closely related to the Piagetian
mechanisms of assimilation and accommodation
(Piaget, 1977). One way to support such gradual
mental constructions is by providing learners
with a suitable learning environment in which
they are active. The working assumption is that
the feedback, provided by a learning environment
in which learners learn a complex concept in an
active way, supports mental constructions of the
learned concepts.

In this chapter, we start by presenting the
course structure and then focus on the ten kinds
of tasks used throughout the course. We explain
the nature of each kind of tasks and how it may
improve students’ skills as software engineers. We
conclude with some suggestions for implementing
our approach in other courses.

Background: Human Aspects
of Software Engineering-
Course Description

This section describes the different topics ad-
dressed in the course on Human Aspects of
Software Engineering by highlighting their im-
portance from the learners’ perspective.

Lesson 1—The Nature of Software Engi-
neering: This lesson aims at increasing learners’
awareness that the success or failure of software
development stem mainly from people-centered
reasons rather than from technology-related
reasons. By inviting learners to analyze differ-
ent development environments, we illustrate the
effects of human interaction in software develop-
ment processes.

Lesson 2 —Software Engineering Methods:
This lesson focuses on models of several soft-

12 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/tasks-software-engineering-education/29593

Related Content

Applications of Filter Banks to Communications
Cihan Tepedelenliogluand Gerogios B. Giannakis (2002). Multirate Systems: Design and Applications (pp.

225-256).

www.irma-international.org/chapter/applications-filter-banks-communications/27229

Cardiac Arrhythmia, CHF, and NSR Classification With NCA-Based Feature Fusion and SVM

Classifier
 Deepak H. A.and Vijayakumar T. (2023). International Journal of Software Innovation (pp. 1-24).

www.irma-international.org/article/cardiac-arrhythmia-chf-and-nsr-classification-with-nca-based-feature-fusion-and-svm-

classifier/315659

Improving Software Design by Mitigating Code Smells
Randeep Singh, Amit Kumar Bindaland Ashok Kumar (2022). International Journal of Software Innovation

(pp. 1-21).

www.irma-international.org/article/improving-software-design-by-mitigating-code-smells/297503

A Software Engineering Framework for Context-Aware Service-Based Processes in Pervasive

Environments
Zakwan Jaroucheh, Xiaodong Liuand Sally Smith (2014). Software Design and Development: Concepts,

Methodologies, Tools, and Applications (pp. 71-95).

www.irma-international.org/chapter/software-engineering-framework-context-aware/77700

Analyzing Impacts on Software Enhancement Caused by Security Design Alternatives with

Patterns
Takao Okubo, Haruhiko Kaiyaand Nobukazu Yoshioka (2012). International Journal of Secure Software

Engineering (pp. 37-61).

www.irma-international.org/article/analyzing-impacts-software-enhancement-caused/64194

http://www.igi-global.com/chapter/tasks-software-engineering-education/29593
http://www.irma-international.org/chapter/applications-filter-banks-communications/27229
http://www.irma-international.org/article/cardiac-arrhythmia-chf-and-nsr-classification-with-nca-based-feature-fusion-and-svm-classifier/315659
http://www.irma-international.org/article/cardiac-arrhythmia-chf-and-nsr-classification-with-nca-based-feature-fusion-and-svm-classifier/315659
http://www.irma-international.org/article/improving-software-design-by-mitigating-code-smells/297503
http://www.irma-international.org/chapter/software-engineering-framework-context-aware/77700
http://www.irma-international.org/article/analyzing-impacts-software-enhancement-caused/64194

