
 ���

Chapter XII
Integrated Software Testing
Learning Environment for

Training Senior-Level Computer
Science Students

Daniel Bolanos
Universidad Autonoma de Madrid, Spain

Almudena Sierra
Universidad Rey Juan Carlos, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbsTRACT

Due to the increasingly important role of software testing in software quality assurance, during the last
several years, the utilization of automated testing tools, and particularly those belonging to the xUnit
family, has proven to be invaluable. However, as the number of resources available continues increasing,
the complexity derived from the selection and integration of the most relevant software testing principles,
techniques and tools into an adequate learning environment for training computer science students in
software testing, increases too. In this chapter we introduce a experience of teaching Software Testing
for a senior-level course. In the elaboration of the course a wide variety of testing techniques, method-
ologies and tools have been selected and seamlessly integrated. An evaluation of students performance
during the three academic years that the course has been held show that students’ attitudes changed
with a high or at least a positive statistical significance.

INTRODUCTION

In this chapter we present a complete methodology
for software testing training in the context of a
laboratory course for senior-level computer sci-

ence students. The intent of this work is to provide
educators with a set of guidelines to effectively
instruct computer science students on software
testing. The goal is not only to incorporate specific
software testing skills into students’ curricula,

���

Integrated Software Testing Learning Environment

but also to prepare the student with skills for
independent lifelong learning on the topic. The
designed course spans the whole software testing
lifecycle, and includes teaching recommendations
to address students’ common difficulties and
misconceptions, as well as techniques to evaluate
Students’ performance for every stage.

During three academic years (2003-2006,
note that results for the ongoing academic year
are not currently available) we have developed
and improved a software testing learning envi-
ronment that has been used to train senior-level
students in the Department of Computer Science
of Universidad Autonoma de Madrid (Spain).
In this environment, students are instructed
about the elaboration of the test plan, test cases
design, testing automation by means of specific
tools, reporting and interpreting test results and
maintenance related issues. All of these tasks are
carried out over a complete pre-existent software
system that has been specifically developed for
this purpose.

To evaluate the effectiveness of the approach
we have carried out attitudinal surveys to stu-
dents during the three years that the course has
been offered. These surveys provided us with
inestimable information about students’ progress
and perception on several aspects of the course.
This information was used to find out which ele-
ments of the course were perceived by students
as most useful, most difficult or most personally
rewarding; and, of course, to improve the learning
environment along the academic years. We have
found that, thanks to their immersion in this test-
ing environment, students understood the crucial
importance of software testing across the software
lifecycle. Also, they incorporated a complete
testing methodology and a broad set of software
testing tools into their previous knowledge.

The chapter is divided into the following sec-
tions: a background section in which previous
work on the topic is discussed and compared
to the proposed approach, a description of the
software testing learning environment including

teaching recommendations and a description of
the students’ performance evaluation method, an
evaluation of the effectiveness of the approach
and a final section with the conclusions and
future work.

bACkGROUND

Due to the increasingly important role of software
testing in software quality assurance, during the
last years, the use of testing frameworks that
assist the developer during the testing process,
and particularly the use of those belonging to
the xUnit family, has proven to be invaluable.
The production of high-quality and bug-free
software products and solutions has gained a
crucial importance in the software development
industry, always focused to meet the needs of its
increasingly more demanding end-users. In the
last few years, many software testing techniques
and methodologies have emerged to address
these challenges, some of them influenced by
agile (Beck, K. et al., 2001) and particularly by
Extreme Programming (XP) (Beck, K., 2000).
These techniques provide a wide set of principles,
practices and recommendations for all the tasks
involved in the software testing process, from test
case design to automation of functional tests. In
this context, an overwhelming number of testing
frameworks and tools have been developed and
are available (many of them under open-source
licenses) with the purpose of aiding the developer
in testing every particular system aspect written
in any programming language imaginable.

However, as the number of resources and
techniques available continues increasing and
demonstrating new benefits, the complexity de-
rived from the selection and integration of the most
relevant software testing principles, techniques
and tools into an adequate learning environ-
ment for training computer science students in
software testing, increases too. Though several
interesting experiences have been reported, to

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/integrated-software-testing-learning-

environment/29601

Related Content

Formal Semantics of Dynamic Constraints and Derivation Rules in ORM
Herman Balstersand Terry Halpin (2016). International Journal of Information System Modeling and Design

(pp. 31-47).

www.irma-international.org/article/formal-semantics-of-dynamic-constraints-and-derivation-rules-in-orm/162695

Designing Reputation and Trust Management Systems
Roman Beckand Jochen Franke (2009). Systems Analysis and Design for Advanced Modeling Methods:

Best Practices (pp. 202-218).

www.irma-international.org/chapter/designing-reputation-trust-management-systems/30024

A SWOT Analysis of Software Requirement Validation Techniques
Boluwaji Ade Akinnuwesi, Stephen Gbenga Fashoto, Elliot Mbunge, Petros Mashwamaand Patrick

Adeomo Owate (2022). International Journal of Software Innovation (pp. 1-24).

www.irma-international.org/article/a-swot-analysis-of-software-requirement-validation-techniques/297132

Location-Based Service (LBS) System Analysis and Design
Yuni Xia, Jonathan Munson, David Woodand Alan Cole (2009). Handbook of Research on Modern

Systems Analysis and Design Technologies and Applications (pp. 55-75).

www.irma-international.org/chapter/location-based-service-lbs-system/21061

Assimilating and Optimizing Software Assurance in the SDLC: A Framework and Step-Wise

Approach
Aderemi O. Adenijiand Seok-Won Lee (2010). International Journal of Secure Software Engineering (pp.

62-80).

www.irma-international.org/article/assimilating-optimizing-software-assurance-sdlc/48217

http://www.igi-global.com/chapter/integrated-software-testing-learning-environment/29601
http://www.igi-global.com/chapter/integrated-software-testing-learning-environment/29601
http://www.irma-international.org/article/formal-semantics-of-dynamic-constraints-and-derivation-rules-in-orm/162695
http://www.irma-international.org/chapter/designing-reputation-trust-management-systems/30024
http://www.irma-international.org/article/a-swot-analysis-of-software-requirement-validation-techniques/297132
http://www.irma-international.org/chapter/location-based-service-lbs-system/21061
http://www.irma-international.org/article/assimilating-optimizing-software-assurance-sdlc/48217

