
42

Chapter IV
On the Load Balancing of

Business Intelligence Reporting
Systems

Leszek Kotulski
AGH University of Science and Technology, Poland

Dariusz Dymek
Cracow University of Economics, Poland

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

The UML model consists of several types of diagrams representing different aspects of the modeled system.
To assure the universality and flexibility, the UML involves only a few general rules about dependence
among different types of diagrams. In consequence people can have the different methodologies based
on the UML, but in the same time we haven’t the formal tool for assure the vertical cohesion of created
model. To test and reach the vertical cohesion of the model some auxiliary information about the rela-
tions among the elements belonging to different types of diagrams should be remembered. In this chapter
the authors present the method of formal representation of such information in a form of the relation,
called Accomplish Relation. This method is based only on the UML properties and is independent from
any methodology. Additionally, they show how to use the UML timing diagrams for representing the
users’ requirements in association with use cases. To illustrate the usefulness of this approach we pres-
ent how it can be used for load balancing of distributed system in case of a Reporting Systems based
on Data Warehouse concept.

Introduction

In modern concepts of using IT in business orga-
nizations, one of the crucial elements are systems

supporting business decision processes generally
called Business Intelligence systems. This class
of information systems includes data warehouses,
OLAP systems, report generating systems etc.

 43

On the Load Balancing of Business Intelligence Reporting Systems

Their complex structures reflect the multifaceted
of modern business decision processes and the
large scale of necessary information. The com-
mon feature of all mentioned kinds of systems is
a large amount of data and a high computational
complexity. Additionally, there are time limits1
set on response time of these systems which
result in high hardware requirements. On the
second hand, some parts of these systems are
not used all the time with full efficiency. Gener-
ally, BI applications generate several periodical
cycles of a hardware nodes workload. The basic
time cycles are relevant to periodical reports and
adequate processes: we can distinguish daily,
weekly, decadal and monthly cycles and a few
longer cycles: quarterly, half-yearly and annual
ones. Beside periodical processes we have also
processes linked with everyday analytical tasks,
which generate system workload, and must be
taken into account.

Analyzing of the workload schedule for the
whole system, based on aggregated time cycles,
we must take into consideration the structure of
the system. Usually, it consists of many single
components: subsystems, software applications
and hardware nodes. Considering the workload
schedule for each hardware nodes we can indicate
the situations in which one node is overloaded
whereas other nodes are on low level of their ef-
ficiency. To assure optimal resource utilization,
throughput, or response time we can increase the
computing system power (by redundantion of
some hardware components) or reschedule some
processes. Such techniques, called load balanc-
ing, strongly depend on the software structure.
So it seems to be useful to start considering the
timing characteristic of the developed software
from the software modeling phase. This situation
forces formalization of this phase.

Unified Modeling Language (UML), being
an uncontested modeling standard, in version 2.x
offers 13 types of diagrams (Object Management
Group, 2007a). In the load balancing context
we are especially interested in timing diagrams

introduced for describing timing properties of
the modeled system. However, we suggest using
them to describe timing characteristic of user
requirements (represented at use case diagrams)
and to trace their influence to other stages of the
software modeling processes, represented by
class, object and deployment diagrams.

Let’s note that UML as a tool became a base
for some software development methodologies like
RUP (IBM Rational Unified Process) or ICONIC
(Rozenberg & Scott, 2001). It bases on such a
fundamental concepts like an object-oriented
paradigm or a distributed and parallel program-
ming but is independent from those method-
ologies. This fact gives UML some advantages;
especially it can be treated as a universal tool for
many purposes. On the other hand, UML needs
to be supplemented when we consider the verti-
cal consistency of the model (Kuźniarz, Reggio,
Sourrooille, & Huzar, 2002; Dymek & Kotulski,
2007a; Kotulski & Dymek, 2008), i.e. when we
are interested in the formal description how one
type of the UML diagrams influences on the model
described by the other types of the UML diagrams.
In the section below, the relational model, based
on the graph theory, is proposed for describing
the vertical consistency of the model.

Timing diagrams are one of many new arti-
facts introduced by second version of UML. They
are the tool for describing the dynamical aspect
of the modeled system and expressing the time
characteristic of system components. The brief de-
scription of timing diagrams concept is presented
in the following section. We also present the way
of using the timing diagrams in cooperation with
previously presented the relational model for ob-
taining the time characteristic for elements from
different kinds of UML diagrams.

Successive section presents an example of us-
ing previously described models and methods, in
case of the Reporting Data Mart based on the Data
Warehouse concept. We describe how to use tim-
ing diagrams to obtain the time characteristic of
system components, and how these characteristics

15 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/load-balancing-business-intelligence-

reporting/30013

Related Content

Analysis of Existing Software Cognitive Complexity Measures
Sanjay Misra, Adewole Adewumi, Robertas Damaseviciusand Rytis Maskeliunas (2017). International

Journal of Secure Software Engineering (pp. 51-71).

www.irma-international.org/article/analysis-of-existing-software-cognitive-complexity-measures/204524

A Method to Design a Software Process Architecture in a Multimodel Environment: An Overview
Mery Pesantes, Jorge Luis Risco Becerraand Cuauhtémoc Lemus (2018). Application Development and

Design: Concepts, Methodologies, Tools, and Applications (pp. 416-440).

www.irma-international.org/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-

environment/188217

Design Space Exploration for Implementing a Software-Based Speculative Memory System
Kohei Fujisawa, Atsushi Nunome, Kiyoshi Shibayamaand Hiroaki Hirata (2018). International Journal of

Software Innovation (pp. 37-49).

www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-

system/201484

Modeling Approach for Integration and Evolution of Information System Conceptualizations
Remigijus Gustas (2011). International Journal of Information System Modeling and Design (pp. 45-73).

www.irma-international.org/article/modeling-approach-integration-evolution-information/51578

Analyzing Human Factors for an Effective Information Security Management System
Reza Alavi, Shareeful Islam, Hamid Jahankhaniand Ameer Al-Nemrat (2013). International Journal of

Secure Software Engineering (pp. 50-74).

www.irma-international.org/article/analyzing-human-factors-effective-information/76355

http://www.igi-global.com/chapter/load-balancing-business-intelligence-reporting/30013
http://www.igi-global.com/chapter/load-balancing-business-intelligence-reporting/30013
http://www.irma-international.org/article/analysis-of-existing-software-cognitive-complexity-measures/204524
http://www.irma-international.org/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-environment/188217
http://www.irma-international.org/chapter/a-method-to-design-a-software-process-architecture-in-a-multimodel-environment/188217
http://www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-system/201484
http://www.irma-international.org/article/design-space-exploration-for-implementing-a-software-based-speculative-memory-system/201484
http://www.irma-international.org/article/modeling-approach-integration-evolution-information/51578
http://www.irma-international.org/article/analyzing-human-factors-effective-information/76355

