IDEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA 1TJ2911
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

Ontology and Service
Oriented Programming

Bing Li, Arizona State University, USA
Wei-Tek Tsal, Arizona State University, USA

ABSTRACT

This paper presents a novel methodology to develop and integrate distributed applications. It
starts from analyzing requirement specifications based on a service's point of view. Thereafter,
it isrequired to describe each service using ontology. The modeling and describing procedures
are regarded as a new way to program Ontology and Service Oriented (OSO) programming,
and descriptions obtained in the procedure are called OSO code. Moreover, OSO code has the
features of interpretability, transformability, comparability, composability, and portability.
Those features support code interpretation and generation. In addition, OSO code is also
human-readable. This feature minimizes development efforts. Finally, since business logic in
OSO codeisrepresented in a machine-under standabl e format, the procedur e of business process
integration is completed automatically, based on business logic understanding.

Keywords: business process integration; ontology theory; semantic matching; service
integration; service oriented architecture

INTRODUCTION applications. First, aserviceisabuilding block
of distributed applications. SOM requires ana-

lyzing requirement specifications based on the

Thi t el methodol-
IS Paper Presents a novel Metnoo concept of service. One of the mgjor tasks in

ogy, Ontology and Service Oriented (OSO), to h edure i H h)
develop and integrate distributed applications. t € procedure 1S to 'gure ogt what services
The OSO is based on two fundamental tech- €Xist in a distributed appllcatlon to bg devel-
niques: Service-Oriented Modeling (SOM) and oped and how those services are organized to-

Ontology-Oriented Programming (ONOP), gether. Sgcond, a;]servi_c eirs]aflrj]nctior;,bﬁ.duty,
which provide devel opers with a new point of or an action. Each service hasthe capability to

view to analyze an application domain and a receive arequest, complete a task, and gener-

new approach to program. OSO not only saves ate a corresponding response. Interactions oc-

effortsonimplementing distributed applications cur t;]etween _the SeLVi (2: anda Eumran being or
but also facilitates the goal of automatic sys- another service. Therefore, when decompos-

tem integration ing an application domaininto multipleservices,
InOSO, the concept of serviceisthepri- 1t 1S essential to make sure that each of those

mary key to develop and integrate distributed servicesprovidescertain functionalities. Third,
This paper appears in the journal International Journal of Web Services Research edited by Liang-Jie Zhang.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

34 International Journal of Web Services Research, 2(3), 33-68, July-September 2005

aserviceisan autonomous computing compo-
nent, which means that a service works as an
independent entity to provide functions, du-
ties, or actions. In the procedure to service, no
support or intervention is needed. The relations
among services are loose and constructed by
messages transmitted among them. In short, a
serviceisasdf-contained computing unit that is
loosely coupled with each other toformasystem.

Although SOM obtains all the services
and their corresponding associations, only a
skeleton of the system is built up. To make it
work, ONOPisused to describe each servicein
detail. In OSO, a service consists of four ele-
ments: provider, messages, contracts, and busi-
ness logic. The provider is an actor or a sup-
plier of functions, duties, or actions. The mes-
sages are requests/responses transmitted
among services. The contracts define the re-
lations among services. Businesslogic repre-
sents the procedure to generate responses ac-
cording to requests. Moreover, each element
represents certain knowledge (i.e., business
logic) in aservice. In OSO, business logic is
described in an ontology-oriented approach.
Infact, ONOPisan approach to describe busi-
ness logic inside a service by defining all the
vocabularies of the service. After all the vo-
cabularies inside a service are defined, the
service is capable of receiving requests, up-
dating the provider’s status, and generating
corresponding responses (i.e., business logic
in the service is specified using ONOP). The
skeleton of servicesand businesslogic inside
servicesisthe result of SOM and ONOP, and
theresults are represented in an ontol ogy-ori-
ented format. To simplify, the description is
called OSO code.

OSO code is not only machine execut-
able, but isalso machine understandable. There
aretwo waysto execute OSO code: interpreta-
tion and compilation. Aninterpreter isdesigned
to execute OSO code, based on interpretation.
Since OSO codeisindependent of any specific
platforms, it is required that the interpreter be
capable of associating the platform-indepen-
dent descriptions with specific platforms or
applications. Another way to run OSO code
consists of two steps: transforming OSO code

to aspecific programming code and then com-
piling the code into a binary one to execute.
Similar to the OSO interpreter, an OSO trans-
former is designed to achieve the previously
mentioned goal. In short, OSO code has the
features of interpretability and transformability.
One of the major advantages in devel-
oping distributed applications using OSO is
that developers efforts are focused on de-
scribing business logic through specifying
ontology. Furthermore, since OSO codeisrep-
resented in meaningful terminologies, itishu-
man-readabl e specification. Thus, itisconve-
nient for developers to program. In addition,
in the procedure, no implementation details
are required to be cared for by developers.
Effortsare minimized when devel oping distrib-
uted applications using OSO. Another major
advantage is that it is feasible to carry out
system integration automatically on the basis
of OSO code. There is a precondition to
achieve this goal (i.e., a standard ontology
library exists in a specific domain). In OSO,
system integration is a procedure to build a
new business process through discovering
and selecting reusable services and compos-
ing final service instances according to a ser-
vice integration requirement specification
(SIRS). According to measure metrics, busi-
ness logic similarity, business logic satisfac-
tion, and instance similarity, reused service
instances are discovered, selected, and inte-
grated. In summary, OSO code’sfeatures, un-
derstandability, portability, and composability
are important to the integration procedure.
Compared with the current popular pro-
gramming modeling approach, Obj ect-Oriented
Programming (OSO; Coad & Yourdon, 1991)
provides developers with some benefits. Al-
though both an object in OO and a servicein
OSO0 are basic components to model an appli-
cation domain, an object is not an independent
application, but a service is a unique applica-
tionthat provides particular functionalitiesina
distributed environment. In addition, another
important difference is that business logic in
OO0 isspecifiedin amachine-executableformat.
However, business logic in OSO is not only
machine-executable, but isa so machine-under-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

34 more pages are available in the full version of this
document, which may be purchased using the "Add to Cart"
button on the publisher's webpage: www.igi-

global.com/article/ontology-service-oriented-

programming/3063

Related Content

Early Capacity Testing of an Enterprise Service Bus

Ken Uenoand Michiaki Tatsubori (2009). International Journal of Web Services
Research (pp. 67-83).
www.irma-international.org/article/early-capacity-testing-enterprise-service/34106

Using Concept Lattices to Support Service Selection

Lerina Aversano, Marcello Bruno, Gerardo Canfora, Massimiliano Di Pentaand
Damiano Distante (2006). International Journal of Web Services Research (pp. 32-
51).

www.irma-international.org/article/using-concept-lattices-support-service/3088

On Measuring Cloud-Based Push Services

Wei Chen, Shiwen Zhou, Yajuan Tangand Le Yu (2016). International Journal of Web
Services Research (pp. 53-68).
www.irma-international.org/article/on-measuring-cloud-based-push-services/144872

A Service-Based Approach to Connect Context-Aware Platforms and
Adaptable Android for Mobile Users

Valérie Monfort, Sihem Cherifand Rym Chaabani (2013). Adaptive Web Services for
Modular and Reusable Software Development: Tactics and Solutions (pp. 302-332).
www.irma-international.org/chapter/service-based-approach-connect-context/69480

A Critical Review of the Big-Data Paradigm

Ruben Xing, Jinluan Ren, Jianghua Sunand Lihua Liu (2019). Web Services:
Concepts, Methodologies, Tools, and Applications (pp. 75-88).
www.irma-international.org/chapter/a-critical-review-of-the-big-data-paradigm/217823

http://www.igi-global.com/article/ontology-service-oriented-programming/3063
http://www.igi-global.com/article/ontology-service-oriented-programming/3063
http://www.igi-global.com/article/ontology-service-oriented-programming/3063
http://www.irma-international.org/article/early-capacity-testing-enterprise-service/34106
http://www.irma-international.org/article/using-concept-lattices-support-service/3088
http://www.irma-international.org/article/on-measuring-cloud-based-push-services/144872
http://www.irma-international.org/chapter/service-based-approach-connect-context/69480
http://www.irma-international.org/chapter/a-critical-review-of-the-big-data-paradigm/217823

