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ABSTRACT

Brain-computer interfaces (BCIs) have been attracting attention as a research topic. BCI has 
various applications, such as at home and in the medical sector. BCI is an interconnection between 
the human brain and a computer, which is a communication pathway between external peripheral 
devices. Brainwave sensors play a significant role when applying BCIs in practice. In this study, 
data from such sensors are analyzed to classify the mental states of users. This study used two 
different brainwave sensors: Neurosky MindWave Mobile and Emotiv EPOC+. Several types of 
machine-learning techniques (support vector machine, random forest, and long short-term memory) 
have been applied to classify brainwave data. This study aimed to compare the accuracy of the two 
sensors, analyze data, and identify the most accurate machine-learning method. Finally, a BCI toy 
with MaBeee, which is a battery-type internet-of-things device, was designed as a BCI application 
that reflected the analysis results.
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1. INTRODUCTION

Brain–computer interfaces (BCIs), which can be applied in various areas, such as home use, robotics, 
and medical settings, have been widely investigated. BCIs represent an interconnection between the 
human brain and the computer and serves as a communication pathway between external peripheral 
devices. Previously, BCI was a complex term for non-researchers; furthermore, previously, specific 
equipment and environments required to measure the different states of the brain were not easily 
accessible. Over the past decade, portable and simplified electroencephalogram (EEG) sensors have 
been developed. An EEG is used to evaluate the electrical activity of the brain and is one of the 
most popular non-invasive techniques for recording brain activity. Currently, many EEG sensors 
are available, thus allowing BCIs to be investigated extensively. Examples include the operation of 
computers (Márquez et al., 2018) and web browsing applications (Halder et al., 2015), control of 
wheeled robots (Alsammarraie & Inan, 2022; Hiraishi, 2015) and robot arms (Ranky & Adamovich, 
2010), cognitive state analysis in sports (Hiraishi, 2021) and driving (Hiraishi, 2020), patient 
monitoring (Kumar et al., 2015), and some medical applications (Saravanarajan et al., 2021; Ting et 
al., 2021). Thus, many topics related to BCI in diverse areas have been reported.

Brainwave sensors play a significant role in BCI application, and the data from such sensors are 
analyzed to classify the mental states of users. Therefore, the authors used two different brainwave 
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sensors: Neurosky MindWave Mobile and Emotiv EPOC+. These sensors have been widely used 
in many studies, such as the ones mentioned above. Several types of machine-learning techniques 
have been applied to classify brainwave data. This study aimed to compare the accuracy of the two 
sensors, analyze the data, and identify the most accurate machine-learning technique. The following 
machine-learning methods were the focus of this study: the support vector machine (SVM), random 
forest, and long short-term memory (LSTM). SVM and random forest are among the most popular 
and effective methods to be proposed before the advent of deep learning. LSTM is a deep learning 
method—a type of recurrent neural network—and is advantageous in that it allows the analysis 
of time-series data such as brainwaves. These methods are typically used for brain data analysis 
(Costantini et al., 2009; Edla et al., 2018; Liao et al., 2018; Roy et al., 2019; Ting et al., 2021). That 
is the reason why they were selected in this study.

This study focused on three classes of mental states: “attention,” “meditation,” and “other.” The 
brainwave data for each class were obtained using each sensor from three subjects and then analyzed 
using each method. Subsequently, the characteristics of the brainwave sensors and mental state 
classifiers were clarified by comparing the accuracy of each combination. Finally, a BCI toy with a 
battery-type Internet-of-Things (IoT) device was designed as a BCI application to demonstrate the 
analysis results.

2. BRAINWAVE SENSORS

Figure 1 shows the two brainwave sensors adopted in this study, namely MindWave Mobile from 
NeuroSky Inc. (on the left) and EPOC+ from Emotiv Inc. (on the right), both of which are EEG sensors.

EEG scans are performed by placing small metal disks—known as EEG electrodes—on the scalp. 
These electrodes identify and record electrical activity in the brain. The obtained EEG signals are 
amplified, digitized, and then sent to a computer or mobile device for storage and data processing.

MindWave Mobile is an extremely simple and user-friendly sensor with a single channel, which 
comprises only two electrodes at the forehead and ear. The headset’s sensor measures the brain’s 
electrical activity between the forehead and ear; it transfers the data via Bluetooth to a computer, 

Figure 1. MindWave Mobile (left) and EPOC+ (right)
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