
DOI: 10.4018/IJOSSP.313183

International Journal of Open Source Software and Processes
Volume 13 • Issue 1

﻿
Copyright © 2022, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

*Corresponding Author

1

ABSTRACT

Bug triage is an essential task in the software maintenance phase. It is the process of assigning a
developer (fixer) to a bug report. A personnel (triager) has to analyze the developers’ profiles and
bug reports for the purpose of making a suitable assignment. Manual bug triage consumes time and
effort, so automating this process is a necessity. The previous research studies addressed the triage
problem as an information retrieval problem, where the new bug report is the query. Other researchers
tackled this problem as a classification problem and utilized traditional machine learning or deep
learning techniques. A handful of research studies handled this problem as an optimization problem
and utilized optimization algorithms such as Hungarian. This paper briefs and analyzes the previous
bug triage approaches in addition to conducting an empirical comparison among five of the previous
approaches.

Keywords
Bug Triage Automation, Information Retrieval, Machine Leaning

1. INTRODUCTION

During the maintenance phase of large open source software projects, issues and defects usually
show up. Bug reports are submitted to document these defects. The bug report includes the issue’s
information; such as bug id, summary, reporter name, severity, priority and submission date. Issue
tracking systems (ITS) such as Bugzilla (Bugzilla, 2014) and Jira (Jira Software, n.d.) are used to
manage and track the submitted reports (A. Hamdy & G. Ezzat 2020). Bug triage process is the
assignment of each bug report to one of the developers, who is qualified enough to fix the assigned
bug (Alenezi, Banitaan, & Zarour, 2018). A triager (personnel) analyzes each of the submitted bug
reports and the developers’ profiles to assign each developer to a bug report based on their experience
and skills. Manual triage is a time-consuming process; the trigger, as a human, is not able commit to
memory the qualifications of each developer and the skills required in each bug report; specially with
the massive number of submitted bug reports to the ITS. For example, in November 2019, Eclipse

Bug Triage Automation Approaches:
A Comparative Study
Madonna Fanoos, British University in Egypt, Egypt*

Abeer Hamdy, British University in Egypt, Egypt

Khaled A. Nagaty, British University in Egypt, Egypt

International Journal of Open Source Software and Processes
Volume 13 • Issue 1

2

ITS recorded 500,000 issue report (Anvik, Hiew, & Murphy, 2006) and 1,600,000 issue report are
submitted in Mozilla repository. Also, 800,000 issue reports are received by Mozilla in October
2012, with around 300 new changes every day (Anjali, January 2015). These numbers indicate how
this problem is sophisticated with respect to human resources and financial aspects. What makes
it more complicated is the tossing actions. Tossing a bug report is a process of reassigning it to
another developer in case the first one failed to solve it. Around 37% of the received bug reports
go in reassignment (tossing) process (Gondaliya, Peters, & Rueckert, 2018). These tossing actions
not only waste financial and human resources but also it delays the fixing time. In other words, an
overloaded developer can take much time to address the problem, also a less qualified developer may
fail to fix the assigned bug. In both cases the bug requires longer time to be fixed. Accordingly, more
human and financial recourses will be required. Therefore, tossing actions should be minimized as
much as possible.

The essential point behind the triage problem is assigning the bug report to the developer who
is definitely able to make the required changes. Given the above-mentioned statistics, it is clear that
a triager cannot equally distribute the newly submitted bugs over the developers. In addition, there
may be sever issue that have critical consequences on the whole project. Thus, incorrect assignments
decisions may lead to an increase in the fixing time and cost. Also, inaccurate assignment between
the developers and bug reports waist the human resources, because of the tossing actions. According
to the National Institute of Standards and Technology, handling software bugs requires over $59.5
billion per year (NIST, May 2002). Additionally, in Aka company, the payment of a senior bug fixer is
$129,328 per year (Glassdoor, n.d.). Because of these big numbers, triaging systems must be optimized.

This paper summarizes and compares among the previous bug triage approaches, in a period
from 2006 to 2022. The main contribution is summarized in a four-fold:

•	 Summarizing the state of art into a categorization schema; showing the model, algorithms,
datasets used for each paper and results concluded by each of them.

•	 Providing a comparative analysis among previously published research papers.
•	 Introducing an experimental comparison for the performance of five classifiers in developer

prediction.
•	 Providing some open discussion, which leads to find a gap to work on, in the future.

This paper is organized as follows: Section 2 provides a background and an explanation for
some terminologies, that are necessary to understand the research area. Section 3 introduces a brief
summary for the state of art. Section 4 discusses the previously proposed approaches in a criticizing
manner. Section 5 shows experimental results of some classifiers used in bug triage problem. Section
6 introduces some ideas that could be explored in the future and conclusion.

2. BACKGROUND

This section introduces the main terminologies and concepts used in bug triage in addition to the
main algorithms adapted by previous triaging approaches.

2.1 Bug Report
A term bug can be defined as an unexpected system response, as a result from a code logical or
syntax mistake. When the tester finds a bug in a software under test, he uses a bug report document
to raise. Bug report is a standard form consists of a group of fields to define the raised issue, such as:

•	 Bug ID: unique number to identify the bug.
•	 Bug Description: a short paragraph describing the issue and the its module.

17 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/article/bug-triage-automation-approaches/313183

Related Content

MEPES: Methodology for Evaluating the Performance of E-Mail Servers
Pedro Alexis Torres Calderónand Emigdio Antonio Alfaro Paredes (2018).

International Journal of Open Source Software and Processes (pp. 47-64).

www.irma-international.org/article/mepes/221363

On Solving the Multi-Objective Software Package Upgradability Problem
Noureddine Aribiand Yahia Lebbah (2018). International Journal of Open Source

Software and Processes (pp. 18-38).

www.irma-international.org/article/on-solving-the-multi-objective-software-package-upgradability-

problem/213932

Of Experts and Apprentices: Learning from the KDE Community
Christian Reinhardtand Andrea Hemetsberger (2007). Open Source for Knowledge

and Learning Management: Strategies Beyond Tools (pp. 16-51).

www.irma-international.org/chapter/experts-apprentices-learning-kde-community/27808

Trust in Open Source Software Development Communities: A

Comprehensive Analysis
Amitpal Singh Sohal, Sunil Kumar Guptaand Hardeep Singh (2018). International

Journal of Open Source Software and Processes (pp. 1-19).

www.irma-international.org/article/trust-in-open-source-software-development-

communities/221361

Ripple Effect Identification in Software Applications
Anushree Agrawaland R.K. Singh (2020). International Journal of Open Source

Software and Processes (pp. 41-56).

www.irma-international.org/article/ripple-effect-identification-in-software-applications/251194

http://www.igi-global.com/article/bug-triage-automation-approaches/313183
http://www.igi-global.com/article/bug-triage-automation-approaches/313183
http://www.irma-international.org/article/mepes/221363
http://www.irma-international.org/article/on-solving-the-multi-objective-software-package-upgradability-problem/213932
http://www.irma-international.org/article/on-solving-the-multi-objective-software-package-upgradability-problem/213932
http://www.irma-international.org/chapter/experts-apprentices-learning-kde-community/27808
http://www.irma-international.org/article/trust-in-open-source-software-development-communities/221361
http://www.irma-international.org/article/trust-in-open-source-software-development-communities/221361
http://www.irma-international.org/article/ripple-effect-identification-in-software-applications/251194

