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ABSTRACT

In this chapter, the authors present hierarchical matrices, which are a 
powerful numerical tool that allows reducing to a logarithmic order both the 
storage needs and computational time in exchange for a controlled accuracy 
loss, thanks to the compression of part of the original data to form low-rank 
blocks. This type of matrices presents certain particularities due to the storage 
layout, the different blocks configurations, and a hierarchically and nested 
partitioned structure of blocks; the presence of dense and low-rank blocks of 
various dimensions; and the recursive nature of the algorithms that compute 
the h-algebra operations. Thanks to the programming model OmpSs-2 and 
specifically to two novel features it incorporates, a fair parallel efficiency 
based on task-parallelism can be achieved in shared memory environments.

INTRODUCTION TO HIERARCHICAL MATRICES

Many engineering fields require powerful simulations of the systems they 
design, build, evaluate or analyze. Most of them do not need a fully accurate 
result and can afford precision losses in exchange for reduced computation 
times. That is the case, for example, of some of the applications on which rely 
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aeronautics simulations of pressure, temperature, tension, etc. that employ 
Boundary Element Methods (BEM).

In this chapter the authors will introduce Hierarchical Matrices (H-Matrices) 
(Hackbusch, 1999) as one of the numerical tools employed when solving 
BEM (Bebendorf, 2008) (Casenave, 2013), and then the authors will focus 
on how task-parallelism becomes the easiest strategy to exploit concurrent 
executions of operations involving H-Matrices, especially when leveraging 
the novelty features included in task-parallel programming models such as 
OmpSs-2.

LINEAR ALGEBRA BACKGROUND ON 
HIERARCHICAL MATRICES

From a mathematical perspective, hierarchical matrices are included in the set 
of compressed structures (Cheng et al., 2003). This is because they are built 
employing procedures that remove the “less representative” entries (which 
is understood as compression) until a pre-established ratio between accuracy 
loss and future computations acceleration is achieved. Conceptually, the 
compressed structures lay between dense and sparse linear algebra elements, 
as there is a presence of null elements in them, but not that high to consider 
them sparse matrices.

Now the authors present some mathematical definitions that are necessary 
for understanding the foundations of H-Matrices (Grasedyck et al., 2003) 
(Hackbusch et al., 2004) (Hackbusch, 2015). The first terms that need to be 
presented are the ones employed in the process of determining the “importance” 
of a certain matrix entry with respect to the others: eigenvalues, eigenvectors 
and singular values.

Definition 7.1. (Eigenvalues and eigenvectors) Let A Rn n∈ × , then if 
there exists a nonzero vector 𝜐∈Rn, and a nonzero scalar 𝜆∈R such that A𝜐=𝜆𝜐
has a nontrivial solution, then 𝜐 is an eigenvector of A, and 𝜆 is an eigenvalue 
of A.

Definition 7.2. (Singular values) Let A Rm n∈ × , then let 𝜆1,𝜆2…𝜆∈R be 
the eigenvalues of ATA (with repetitions). Order them in such a way that 
𝜆1≥𝜆2≥…𝜆n≥0 and let 𝜎i=√𝜆i, so that 𝜎1≥𝜎2≥…𝜎n≥0. Then the scalars 
𝜎i∈R are the singular values of A.

With these two definitions in mind, prior to understanding how the 
compression of data is performed in H-Matrices and similar structures, two 
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