
2000 IRMA International Conference • 51

Data Warehouse Schemas: A Software Engineering
Approach towards an Efficient Modeling of

Complex, Dynamic Conceptual Schemas
Reinhard Jung and Robert Winter

University of St. Gallen, Mueller-Friedberg-Strasse 8, CH-9000 St. Gallen, Switzerland
Tel: +41 71 224 2934; Fax: +41 71 224 2189; {reinhard.jung | robert.winter}@unisg.ch

ABSTRACT
In contrast to most traditional information systems which are based on a static, consistent view of transactional data, a data
warehouse comprises several stages of data integration and data aggregation. Hence, the conceptual design of data ware-
houses addresses not only data structures, but also derivation paths. Integration and aggregation paths result in highly
complex schemas and consistent time references must be introduced. Moreover, available meta data often cannot be reused
for data warehouse design because warehouse development tools focus on physical data load instead of conceptual integra-
tion. In this paper we enrich the Structured Entity-Relationship Model with appropriate extensions for data warehousing
design (e.g. derivation rules and schema aggregation) and adapt a commercial CASE toolset to support such extended
conceptual modeling. By that means warehouse schemas can be specified efficiently and meta data of existing information
systems can be reused.

1 INTRODUCTION
Regardless of the underlying paradigm, today’s traditional

information systems are developed based on conceptual consider-
ations, i.e. they are designed according to the requirements at first.
In contrast to that, data warehouses are usually built upon existing
operational systems. Different views on corporate data have to be
integrated into the data warehouse which is subsequently subdi-
vided into data marts when appropriate. The foundation on exist-
ing systems and their data does not imply the design phase may be
omitted [7]. Instead, existing data elements must be integrated (e.g.
naming and structural conflicts have to be resolved) and mapped
into a common schema.

Due to its purpose, scope and foundation, a conceptual data
warehouse schema differs from schemas of conventional infor-
mation systems:
• The schema is likely to become unusually large and therefore

complex [9][11].
• Data aggregation and integration is normally implemented

within the warehouse database. Hence, data derivation paths
have to be included in its conceptual schema. The precise mod-
eling of redundancy, however, was never required in traditional
database design and creates some unsolved problems.

• Not only integration, but also consistent time references are
required to transform transaction data into management infor-
mation. Hence, time has to be dealt with on a conceptual basis.

Based on a short recapitulation of the state of the art in data
warehouse / data mart design (section 2), deficits of current prac-
tice are identified in section 3. In section 4 schema abstraction
levels, derivation rules and time semantics are proposed to over-
come the shortcomings of traditional Entity-Relationship (ER)
modeling for conceptual data warehouse design. Since additional
design concepts cannot be utilized efficiently until a tight integra-
tion with CASE environments and corporate meta data is achieved,
a prototypical implementation using Oracle’s toolset Designer/2000
is summarized in section 5. The paper closes with conclusions and
directions for further research (section 6).

2 STATE OF THE ART IN DATA WAREHOUSE /
DATA MART DESIGN

There is a large number of commercial data warehousing
tools available and it is almost impossible to keep up with the
dynamic growth of this market segment. A rather comprehensive
tool overview can be found on Datamation’s web site
(www.datamation.com). For our purposes it is sufficient to apply
a simple classification taken from the same source. Data ware-
housing tools can be categorized as follows:
1. Warehouse construction components (data extract, cleaning,

and load).
2. Warehouse operation components (data storage and warehouse

management).
3. Warehouse access components.

Tools belonging to the first category are designed to extract
the data from operational environments, including tasks like clean-
ing, or „scrubbing“, to establish a data warehouse or data marts.
The second category comprises tools for warehouse operation, i.e.
specialized database management systems and similar systems.
The third category includes end-user tools providing warehouse
access to managers (e.g. OLAP tools) and tools for data download
into spreadsheet software.

The main problem about the classes of tools as described
above is the fact that no real integration is achieved between the
different components. The only commonality between the tools is
their orientation towards the implementation level:
• a construction component creates the warehouse database.
• an operation component runs it.
• one or more access components are finally used to extract data

for decision support.
Although some tools make use of a repository [2], sharing

design meta data is far from being a common practice.
A comprehensive approach for data warehouse design has

yet to be developed. This state of affairs might be attributed to the
different interpretations of the term „conceptual model“. On the
one hand, during warehouse construction, conceptual models simi-

This paper appears in Challenges of Information Technology Management in the 21st Century, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2000, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4469
IDEA GROUP PUBLISHING

52 • IT Management in the 21st Century

lar to those deployed in conventional systems design are used. On
the other hand, the basis of warehouse access are conceptual mod-
els focusing on multidimensional aspects, e.g. the hypercube model.
The challenge in warehouse design seems to be the integration of
these different conceptual models. Glofarelli et al. propose an in-
teresting approach called Dimensional Fact model which trans-
forms pre-existing ER schemas semi-automatically [6]. However,
by simply transforming schemas, their interdependencies (e.g. the
data flow within the warehouse or towards the data marts) remain
being implicit.

3 WHERE TRADITIONAL CONCEPTUAL
MODELING FAILS

Conceptual database design methods aim at creating schemas
which are later used to generate databases for conventional infor-
mation systems. On the one hand, such transactional systems mostly
have comparably small schemas because of their limited scope.
On the other hand, the schemas comprise mostly transactional data
for day-to-day operations. For such „static“ data, a current state
and maybe a few obsolete states are stored, while its derivation,
change history and utilization remain implicit and is usually hid-
den in application code. Finally, although time references are com-
monly used, time semantics are not addressed explicitly.

Hence, the features of conceptual database design methods
are in some ways restricted to transactional systems [6]. Manage-
ment information systems or, more generally speaking, decision
support systems require a completely different type of database.
The schema of a data warehouse has to provide an integrated data
view of a broad range of operational systems [7]. Furthermore, it
has to deal with dynamic aspects of data, e.g. data derivation for
integration or aggregation purposes.

Therefore, a suitable design approach for data warehouses
has to deal with the following characteristics:
1. Very large schemas: Due to the broad scope of data warehouses

as regards enterprise data, the resulting schema is likely to be-
come very large and, therefore, very complex. This is also true
if the data warehouse is physically subdivided into several data
marts because an integrated view is nevertheless necessary to
depict interdependencies between the marts.

The design approach of choice should provide mechanisms
to navigate through the schema without loosing the overall picture
and should support abstraction levels in schema design. Required
features are:
• Arrangement Rules: Consistent rules are needed to increase

readability and to arrange the schema’s components according
to the actual design task [4].

• Clustering/Disaggregation Capabilities: An efficient handling
of the schema is largely dependent on suitable capabilities for
clustering and aggregation/disaggregation. The latter is espe-
cially important if the overall schema comprises several data
mart subschemas.

2. Redundancy: On the physical level, according to the initial
idea of data warehousing, the database comprises both elemen-
tary data (e.g. amount of invoice) and integrated and/or aggre-
gate data (e.g. daily turnover). Hence, redundancy is introduced.
Since the data warehouse designer needs to control this redun-
dancy, it would be appropriate to provide conceptual informa-
tion about redundancy and the underlying data flows.

Traditionally, conceptual data models (e.g. the ER model)
deal with aggregation and dependencies on the entity type level,
but do not usually cover derived attributes because redundancy is
avoided wherever possible. In data warehouse databases, however,
derivation rules and the resulting derivation paths represent im-

portant conceptual details of the schema and have, therefore, to be
taken into consideration during the design phase.
3. Temporal aspects of data objects, i.e. their relation to time pe-

riods or to certain points in time, must be made explicit to al-
low for their correct integration, aggregation and propagation.

Warehouse data is typically structured along multiple dimen-
sions, e.g., the data element turnover can be structured by the di-
mensions product, region and dealer. Although time is only one of
many possible dimensions, it is most likely the one occurring in
every warehouse data object. A very critical issue in this context is
that data from operational systems has typically no explicit rela-
tion to time but almost always an implicit one becoming impor-
tant during warehouse design. There are two different ways in
which data can be related to time:
• Reference: The data is related to a specific point or period of

time, e.g. a monthly turnover references the turnover summed
up from the first to the last day of the month.

• Validity: The data reflects the state in a point or during a period
of time (e.g. a monthly value measured on the 15th day of the
same month).

In contrast to other modeling tasks (e.g. aggregation/disag-
gregation of entity types), the ER model does not provide suitable
constructs for such semantics.

4 CONCEPTS AND METHODS FOR CONCEPTUAL
DESIGN OF DATA WAREHOUSES / DATA MARTS

In this section we present three general concepts contribut-
ing to overcome the shortcomings of traditional ER modeling for
conceptual data warehouse design: Schema abstraction levels are
needed to preserve the ability of developers and key users to handle
very large schemata usually found in data warehousing projects.
Derivation rules are needed for the conceptual representation of
derivation paths (e.g. for data integration and aggregation). Fi-
nally, explicit time semantics have to be introduced into concep-
tual modeling to allow for longitudinal analyses and integration of
heterogeneous transaction data. The information model extensions
resulting from these three concepts are presented in subsection
4.4.

All concepts are based on the Structured ER (SER) model
initially proposed by Sinz [17] and used (e.g. by SAP AG) for the
conceptual design of its R/3 databases [14]. Basically, the SER
model creates an object type tree based on existential dependen-
cies instead of an ER type network. Being a foundation for dy-
namic integrity control, existential dependencies have been con-
tinuously discussed in conceptual modeling. But in contrast to early
proposals to represent existential dependencies as properties of
„weak“ object types [3], it was shown in [16] and [21] that they
should rather be represented by a special class of (directed) rela-
tionship types. A relationship type representing an existential de-
pendency is designated as a reference type. When reference types
are used for conceptual modeling, the distinction between entity
types and relationship types becomes obsolete. Instead, it can be
differentiated between dependent (i.e. referencing) object types
and independent (i.e. non-referencing) object types. All relation-
ship types of the ER model are dependent object types. Since sub-
type, aggregate and associative instances reference other instances,
these types are also dependent object types.

Since references are directed, a SER schema comprising only
object types and reference types can be processed as a directed
graph. In particular, such a schema can be arranged graphically
following some simple arrangement rules, and reference cycles
can be detected easily. Hence, in particular for complex schemas,
the tree structure allows for structured navigation and simplified

2000 IRMA International Conference • 53

and/or better quality control.
4.1 Schema abstraction levels

As mentioned above, ER schemas and their textual docu-
mentation lose their capability as an efficient communications plat-
form for developers and key users with increasing complexity.
Several techniques have been proposed to preserve a schema’s
usability for these purposes:
• Decomposition into subschemas using functional or process-

based decomposition (e.g. „Production Planning“, „Sales and
Distribution“, „Finance“, „Asset Management“, „Controlling“,
„Materials Management“, „Human Resources“, etc. in SAP’s
R/3 system [15])

• Arrangement of schema elements based on existential depen-
dencies to allow for a ”structured”, specific interpretation [17]

• Schema condensation by means of a complex graphical nota-
tion [14]

However, even subschemas of SAP’s R/3 system still com-
prise 300+ object types and 650+ relationship types, so even a
scaled down graphical representation requires about 35 letter size
pages to be printed and the textual documentation becomes a book
with 448 pages. Obviously, schema decomposition, arrangement
rules and a complex graphical notation cannot guarantee the us-
ability of the SER model for the development of very large schemas.

Hence, SER schemas have to be clustered. But not every
clustering operation results in a consistent clustered schema: The
advantages of clustered SER schemata (with regard to visualiza-
tion and documentation) coincide with a more or less significant
loss of information that may even lead to inconsistent models.
Based on earlier work on ER schema clustering [5][8][12][19][20]
and SER schema clustering [10], a set of rules is proposed in [25]
preserving certain formal consistency properties:
• Object type aggregation and object type selection may both be

used for schema clustering.
• Object type aggregation must not create new object types.
• Object type aggregation must be based on references.
• Schema clustering cannot be performed algorithmically.
• An object type may be aggregated into more than one cluster.
• Reference clustering rules depend on object type clustering.

Following these rules, consistent clustering operations can
be distinguished from inconsistent ones, so quality properties of
the detailed schema are preserved in the clustered schema. By ap-
plying these rules to SAP’s R/3 PP and SD
subschemas, the number of schema elements was
reduced by 75% [25].

Schema clustering rules cannot only be
used for schema simplification, but also in an
inverse way for schema refinement. In contrast
to schema clustering, no semantic information
is lost in schema refinement. Instead, semantic
information must be added. Although schema
refinement by applying inverse clustering rules
was first analyzed in [24], more research is
needed to fully understand the schema refine-
ment process.

4.2 Derivation rules
To capture additional semantics in concep-

tual modeling, not only abstraction dependen-
cies and existential dependencies, but also deri-
vation rules can be introduced into conceptual
modeling [18][22]. Derivation rules are normally
ignored in conceptual design because, for a long
time, commercial Database Management Sys-

tems (DBMSs) have been unable to guarantee the consistency of
derived data [1]. With the introduction of database triggers and
stored procedures, however, redundancy control can be guaran-
teed efficiently. Hence, there are no reasons to avoid data deriva-
tion in data warehouse databases.

Although some basic types of derivation can be differenti-
ated that normally depend upon some particular type of abstrac-
tion dependency, the taxonomy of derivation rules is far from be-
ing as complete as the taxonomy of abstraction dependencies. As
a consequence, derivation rules cannot be formalized to such an
extent, and respective invariant properties remain quite abstract
(see [23] for a detailed analysis). A graphical notation for six gen-
eral classes of derivation rules (with examples) is illustrated in
Figure 1.

Except for functional derivations, derivation relationships
can be formalized as a relation between [22]:
• the target object type.
• a set of target attributes.
• a set of object types triggering a regeneration.
• a derivation rule.
• a set of source object types.
• a set of source attributes.

Although derivation rules may be formalized using the tuple
relational calculus [13], we prefer a structured, SQL-like formal-
ization to allow a straightforward generation of database triggers
(see section 5). In contrast to other SQL-oriented rule declarations
(e.g. [18]), we do not specify derivation rules as a SQL-database
object. Instead, rules are only represented in the conceptual model
explicitly. In the schema’s implementation, they are distributed
over various SQL database trigger declarations by a trigger gen-
erator.

4.3 Time semantics
Transaction data time references are explicitly related to a

specific point or period of time. For example, each production pro-
gram entry represents the total amount of planned production for
some product from the first to the last day of some month. But
implicitly, each production program entry has another time refer-
ence: Since plans are changed frequently, the amount is valid dur-
ing a certain period of time only.

To specify data loads into the data warehouse in a general

Figure 1. Classes of derivation rules [23]

Simple
Inheritance

Association
Grouping

Weight Weight

Multiple
Inheritance

Partial Key
Grouping

Join
Derivation

Functional
Derivation

Weight

Weight

Weight

Aggregate
Capacity

Ulilisation
Quantity Quantity

Free
Capacity

Average
Free CapacityQuantity

Quantity

Quantity

Quantity
Production
Program

Summarised
 Bill of Work

Quantity
Quantity

Quantity

Bill of
Work

Bill of
Material Summarised

Bill of Work

ProductAssembly

Detailed
Capacity
Utilisation

Detailed
Capacity
Utilisation

Compo-
nent

Assembly

Sub-
assembly

Machine

54 • IT Management in the 21st Century

form, it is necessary to identify a taxonomy of explicit and im-
plicit time references. If this information is included in the con-
ceptual model (e.g. by using ”cumulative”, ”overwriting” and
”archiving” relationships between object types), it will be pos-
sible to automatically generate load procedures.

Data warehouse input data can be differentiated into net-
change transaction data and regenerative ”snapshot” data. Both
can explicitly and/or implicitly reference a point in time or a time
period. If net-change data have no explicit time reference the data
warehouse data are simply accumulated by loaded data. If input
data have an explicit time reference, it has to be checked whether
the loading cycle and the time references are identical. If this is
true, updates have to be identified by a comparison of old and new
data. Otherwise, warehouse data is replaced by the ”newer” input
data. If, on the other hand, snapshot data are loaded into a ware-
house data structure having no explicit time reference, it can be
replaced by the ”newer” data. If it has explicit time reference, it
has to be checked whether time horizon of existing and time hori-
zon of loaded data are identical. If this is true, a new implicit time
reference is generated and input data are stored in addition to ex-
isting warehouse data. Otherwise, the warehouse data are accu-
mulated by loaded data.

Thus, the way of loading data into the data warehouse can
be derived from properties of data that should be specified during
conceptual modeling. Of course, our taxonomy is far from being
applicable to all kinds of data warehouses and input data. We are,
however, confident additional research will identify extended tax-
onomies general enough that respective schema specifications can
be processed by generators to derive load procedures automati-
cally.

4.4 Extended information model
Productivity enhancements in data warehouse development

require the various design, specification and generation tools to be
based on a common repository. Ideally, such a repository is even
shared with traditional (code-based or 4GL) application develop-
ment tools. Application development repositories implement gen-
eralized information models of the supported tools. If a sufficiently
elaborated base information model is available, the identification
of extensions is quite straightforward because all concepts pro-
posed in this paper can be specified by means of:
• additional associations between existing information objects

(e.g. clustering relationships as associations between entities)
and/or

• additional attributes for existing information objects (e.g. deri-

vation rules as additional attributes of attributes, explicit/im-
plicit time references, time horizons, and loading cycles as ad-
ditional attributes of entities).

As an example of information model enhancements, exten-
sions covering general abstraction dependencies and derivation
rules are illustrated in Figure 2. When linked to a schema, con-
cepts become object types and properties become attributes. For
every object type, certain attributes build the primary key. To pre-
vent update anomalies, full functional dependency must be given
between the primary key and all other attributes. Like abstraction
dependencies link referencing object types to referenced object
types, derivation rules link source attributes to target attributes.

5 DEVELOPING DATA WAREHOUSES USING
ORACLE’S DESIGNER/2000

Modern CASE toolsets combine various analysis, design,
implementation and test tools so the entire application life cycle is
covered. Phase transitions tools (generators, reverse engineering
tools), common reporting, project planning and quality control tools
as well as, most important of all, a common repository for all sys-
tems views and development tasks complement isolated tools into
an integrated application development environment.

The tight connection between data warehouse data and op-
erative Information System (IS) data should be reflected by a tight
integration of traditional application development (in particular
data modeling) with Data Warehousing development. Hence, the
proposed concepts for enhanced conceptual modeling should be
integrated with a commercial CASE environment used for tradi-
tional IS development. To prove the feasibility of such an integra-
tion, we choose Oracle’s Designer/2000, one of the leading prod-
ucts for client/server application development. Designer/2000’s
repository was extended to store additional associations and at-
tributes, and an additional generator was developed to process the
additional conceptual information and transform it into appropri-
ate database objects. The generator is not presented in this paper.

Designer/2000’s repository is extensible both with regard to
additional associations between its 60+ information object classes
and with regard to additional attributes of its information object
classes.

Schema clustering creates m:n aggregation relationships
between entity types and is, therefore, represented as an additional
association between two ”entity” instances in the repository. The
definition of such a repository extension is illustrated by Figure 3.
Since derivation rules link one target attribute to one or more source
attributes, they may be represented as additional attributes of an

”attribute” instance instead of creating an additional associa-
tion between ”attribute” instances. The former case is illus-
trated by a screenshot of Designer/2000’s repository adminis-
tration utility in Figure 4.

It is, of course, not sufficient just to extend the reposi-
tory. Additional information objects and attributes must be
filled by specifications during conceptual design. Since De-
signer/2000’s graphical design tools are not directly exten-
sible, additional conceptual information can only be recorded
by using form-based repository management tools. Although
this method forces developers to create specifications with
two different tools (graphical versus form-based), it is easy
because additional associations and attributes of the reposi-
tory are automatically covered by the interactive repository
management forms. Figure 5 illustrates the specification of a
derivation rule by using the form-based interface. By multi-
plying the values of the „quantity“ attributes of referenced
„production program“ and „bill of work“ instances, respec-

Object
Type

Attribute Primary
Key

Schema

Full
Functional

Dependency

Concept

Property

Abstraction
Relationship

Reference

Referencing
Object Type

Referenced
Object Type

Derivation
Relationship

Source
Attribute

Target
Attribute

Figure 2. Conceptual repository schema [23]

2000 IRMA International Conference • 55

tively, the value of „quantity“ attributes of „detailed capacity uti-
lization“ instances is derived.

6 CONCLUSION AND FURTHER RESEARCH
Data Warehousing is a new paradigm as regards manage-

ment support that will become even more important in the near
future. However, it has got very specific characteristics and prob-
lems that have to be dealt with. Although traditional concepts and
techniques for systems development are reusable, some extensions
and modifications have to be done, especially as far as controlled
redundancy is concerned. The concepts presented building blocks
for a comprehensive data warehousing design methodology. We
have shown solutions for the generation of consistency preserving
triggers and have demonstrated the extension of a CASE toolset to
become more useful for warehouse development. Further research
is especially neccessary as regards both the taxonomy of deriva-
tion rules and the time references as a basis for corresponding gen-
eration rules. Another interesting research topic is guidelines for
the design of multidimensional databases.

REFERENCES
1. Adiba M., Derived Relations: A Unified Mechanism for Views, Snap-

shots and Distributed Data, in: Proceedings of the Seventh Interna-

tional Conference on Very Large Data Bases, Cannes, September 1981,
pp. 293-305.

2. Chaudhuri, S, Dayal, U., An Overview of Data Warehousing and OLAP
Technology, ACM SIGMOD Record 26(1), March 1997, pp. 65-74.

3. Chen, P.P., „The Entity-Relationship Model - Towards a Unified View
of Data“, ACM Transactions on Database Systems, 1 (1976), 1, pp.
9-36.

4. Eicker, S., Jung, R., Nietsch, M., Winter, R., Development of Data
Warehouses for Production Controlling Systems, in: Kocaoglu, D.F.,
Anderson, T.R. (eds.): Proc. of PICMET ’97 - Innovation in Technol-
ogy Management - The key to Global Leadership, Portland State Uni-
versity 1997, pp. 725-728.

5. Feldman, P., D. Miller, Entity Model Clustering: Structuring a Data
Model by Abstraction. The Computer Journal, 29 (1986), 4, pp. 348-
360.

6. Golfarelli, M., Maio, D., Rizzi, S., Conceptual Design of Data Ware-
houses from E/R Schemes, in: El-Rewini, H. (ed.): Proc. of the Hawaii
International Conference on System Sciences 1998, pp. 334-343.

7. Inmon, W.H., Building the Data Warehouse, 2nd edition, Wiley: New
York et al. 1996.

8. Jaeschke, P., A. Oberweis, W. Stucky, Extending ER Model Clustering
by Relationship Clustering, in: Elmasri, R. et al. (Eds): Entity Rela-
tionship Approach - ER’93, Springer, Berlin, 1994, pp. 451-462.

9. Meredith, M.E, Khader, A.: Designing Large Warehouses, in: Data-
base Programming & Design , vol 9, no. 6, 1996, pp. 25-30.

10. Mistelbauer, H., Concentration of Data Models - From Project Data
Models to an Enterprise-Wide Data Architecture, Wirtschaftsinformatik,
33 (1991), 4, pp. 289-299 (In German).

11. Poe, V., Clear, careful, and realistic: Guidelines for Warehouse Devel-
opment; Database Programming & Design, vol. 7, no. 9, pp. 60-64.

12. Rauh, O., E. Stickel, Entity Tree Clustering - A Method for Simplify-
ing ER Design, in: Pernul, G. / A.M. Tjoa (Eds.): Entity Relationship
Approach - ER’92, Springer, Berlin, 1992, pp. 62-78.

13. Rauh, O., E. Stickel, Entity-Relationship Modeling of Information
Systems with Deductive Capabilities, Research Report, Europa-
Universität Viadrina, Frankfurt/Oder 1994.

14. SAP AG (Ed.), SAP Information Model, Walldorf/Baden 1994.
15. SAP AG (Ed.), System R/3, General Information, Walldorf/Baden 1994.
16. Scheuermann, P., G. Schiffner, H. Weber, „Abstraction Capabilities

and Invariant Properties Modeling within the Entity-Relationship-Ap-
proach“, in: Chen, P.P.S. (Ed.): Entity-Relationship Approach to Sys-
tems Analysis and Design, North-Holland 1980, pp. 121-140.

17. Sinz, E. J., The Structured Entity-Relationship Model (SER-Model),
Angewandte Informatik 30 (1988), 5, 191-202 (in German).

18. Tanaka, A.K., S.B. Navathe, S. Chakravarthy, K. Karlapalem, ER-R -
An Enhanced ER Model with Situation-Action Rules to Capture Ap-
plication Semantics, Proc. of the 10th Int. Conference on the Entity-
Relationship Approach, San Mateo 1991, pp. 59-75.

19. Teorey, T.J., G. Wei, D.L. Bolton, J.A. Koenig, ER Model Clustering
as an Aid for User Communication and Documentation in Database
Design, Communications of the ACM, 32 (1989), 8, pp. 975-987.

20. Vermeir, D., Semantic Hierarchies and Abstractions in Conceptual
Schemata, Information Systems, 8/2 (1983), pp. 117-124.

21. Webre, N.W., „An Extended Entity-Relationship Model and Its Use on
a Defense Project“, in: Chen, P.P. (Ed.), Entity-Relationship Approach
to Information Modeling and Analysis, North-Holland, Amsterdam,
1983, pp. 173-193.

22. Winter, R., Design and Implementation of Derivation Rules in Infor-
mation Systems, Data and Knowledge Engineering, 26 (1998), pp. 225-
241.

23. Winter, R., Using Invariants of an Extended Conceptual Model to Gen-
erate Reusable Consistency Control, in: Nunamaker, J.F. / R.H. Sprague
(Eds.): Proc. of the 30th Hawaii Int. Conf. on Systems Sciences, Vol. 3,
IEEE Computer Society Press, 1997, pp. 168-178.

24. Winter, R., Towards an Integration of Structured Techniques for Data
Modeling and Function Modeling in Information Systems Develop-
ment, in: Dias Coelho, J. et al. (eds.): Proc. 4th European Conference
on Information Systems, Lissabon 1996, pp. 1003-1010.

25. Winter, R., Formal Validation of Schema Clustering for Large Infor-
mation Systems, in: Ahuja, M.K. / D.F. Galletta / H.J. Watson (Eds.):
Proc. of the First Americas Conference on Information Systems, Pitts-
burgh 1995, pp. 448-450.

Figure 3. Additional association ”Entity Aggregation” in
Designer/2000’s repository

Figure 4. Additional attribute ”Derivation Formula” in
Designer/2000’s repository

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/data-warehouse-schemas/31515

Related Content

Hexa-Dimension Code of Practice for Data Privacy Protection
Wanbil William Lee (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 4909-

4919).

www.irma-international.org/chapter/hexa-dimension-code-of-practice-for-data-privacy-protection/184194

OSTRA: A Process Framework for the Transition to Service-Oriented Architecture
Fabiano Tiba, Shuying Wang, Sunitha Ramanujamand Miriam A.M. Capretz (2009). International Journal of

Information Technologies and Systems Approach (pp. 50-65).

www.irma-international.org/article/ostra-process-framework-transition-service/4026

Particles and Geometric Shapes Analyzer APOGEO
Katia Tannousand Fillipe de Souza Silva (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 3568-3579).

www.irma-international.org/chapter/particles-and-geometric-shapes-analyzer-apogeo/112788

Introducing ITIL Framework in Small Enterprises: Tailoring ITSM Practices to the Size of

Company
 Abir El Yamami, Khalifa Mansouri, Mohammed Qbadouand El Hossein Illoussamen (2019). International

Journal of Information Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/introducing-itil-framework-in-small-enterprises/218855

An Approach to Clustering of Text Documents Using Graph Mining Techniques
Bapuji Raoand Brojo Kishore Mishra (2017). International Journal of Rough Sets and Data Analysis (pp.

38-55).

www.irma-international.org/article/an-approach-to-clustering-of-text-documents-using-graph-mining-techniques/169173

http://www.igi-global.com/proceeding-paper/data-warehouse-schemas/31515
http://www.irma-international.org/chapter/hexa-dimension-code-of-practice-for-data-privacy-protection/184194
http://www.irma-international.org/article/ostra-process-framework-transition-service/4026
http://www.irma-international.org/chapter/particles-and-geometric-shapes-analyzer-apogeo/112788
http://www.irma-international.org/article/introducing-itil-framework-in-small-enterprises/218855
http://www.irma-international.org/article/an-approach-to-clustering-of-text-documents-using-graph-mining-techniques/169173

