
2000 IRMA International Conference •  161

Identifying Business Components
Using Conceptual Models

Klement J. Fellner and Klaus Turowski
Otto-von-Guericke-University Magdeburg, PO box 41 20, 39016 Magdeburg,Germany

Tel: 49 391 671-83 86; Fax: 49 391 671-1216; {fellner | turowski}@iti.cs.uni-magdeburg.de
ABSTRACT

In general, a business component is a software unit that carries out business tasks in a given business area, e.g. production
planning, accounting, or materials management. Using business components may lead to an economic make and buy of
business application systems by combining advantages of developing individual software with those of standardized off-the-
shelf software. However, the necessary standardization of open and flexible business components to obtain these advantages
is still missing. On the other hand, the information systems community has done a lot of research to acquire conceptual
models that describe certain business application areas. In this paper, we propose an approach to utilize this work in order
to identify business components.

1 BUSINESS COMPONENTS
Increasing productivity of system development and augment-

ing flexibility of software systems to react to business process
changes has become a major concern for companies. A business
application system supporting these processes therefore benefits
from being built from well-defined, reusable (off-the-shelf) com-
ponents. This allows application designers to avoid drawbacks
usually emerging in individual software development (e.g. high
potential of failure, unpredictable costs) as well as pitfalls tradi-
tionally associated with standardized software for enterprise re-
source planning (ERP-software) (e.g. functional ballast, high train-
ing costs). Additionally, a plug and play scenario is applicable that
uses off-the-shelf-components mixed with individually imple-
mented components known as make and buy (Kurbel et al. 1994).

A software component, in general, is defined as a software
unit, whose behavior is clearly defined through a publicly exposed
interface, whose implementation is hidden, and that is deployable
as a self-contained unit. For an in depth discussion about the dif-
ferences between (business) objects and software components in
general cf. (Szyperski 1998, pp. 30-32). The term (software) com-
ponent itself is defined differently in almost every approach, but
with a similar core statement. For differences in definitions cf.
e.g. (Nierstrasz 1995), (Orfali/Harkey/Edwards 1996, p. 38),
(Brown/Wallnau 1996), (Sametinger 1997, p. 68), (Szyperski 1998,
p. 30). (Fellner/Turowski 2000) provides a classification frame-
work.

As a guiding model, black-box software components are
composed using other software components (even from different
suppliers) to a customer-individual application system. When ap-
plying the concept of software components to business applica-
tion domains, we talk about business components (BC). Accord-
ing to (Fellner/Turowski 2000), we use the following definition of
BC:

A business component (BC) is a reusable, self-con-
tained and marketable software unit providing services
out of a business application domain through a well-
defined interface and which can be deployed in con-
figurations unknown at development time.
To compose an application system with BCs from different

suppliers, a description of each BC in an independent specifica-
tion language is necessary. These descriptions serve as software
contracts encompassing several levels of abstraction (Beugnard
et al. 1999), e.g. syntactic, behavioral, synchronization, and qual-

ity of service level. Today, we need several kinds of notations to
wholly specify a BC, e.g. on the syntactic level the Interface Defi-
nition Language (IDL) as suggested by the Object Management
Group (OMG) (OMG 1998, S. 3.1-3.40), on the behavioral level
the Object Constraint Language (OCL) as suggested in
(Rational Software et al. 1997), or temporal logics for the
synchronisation level as suggested in (Saake 1993).

Besides specifying BCs, their extent regarding implemented
business tasks has to be standardized at a level still to specify, to
allow a truly independent deployment of BCs (Turowski 2000). In
the following, we give some examples of ongoing standardization
efforts concerning the business application domain:
• The Object Management Group (OMG) proposes a standard

business model for selected business areas (Domain Services)
based on their component model (OMG 1997). However, the
OMG’s component model primary focuses on technical coop-
eration of objects, based on the common object request broker
architecture (CORBA), rather than on cooperation at the busi-
ness level. Especially, it is not specified how independent BCs
are cooperating to carry out specific business functions. The
application domain models are based on domain-specific busi-
ness objects - real-world objects existing in a given business
context (OMG 1996). For example, objects like customer, or-
der, or invoice are defined as business objects.

• The Open Application Group (OAG) focuses on an easy and
cost-effective integration of existing business application sys-
tems based on a middleware application program interface (API)
and the specification of so-called Business Object Documents
(BOD) (OAG 1997). With this, integration of coarse-grained
components (modules of standardized ERP-systems) is ad-
dressed.

• SAP, as one of the largest providers of integrated business ap-
plication systems, defines business objects as a public inter-
face to their SAP R/3 system. Along with the publication of
their interface, SAP is restructuring the previously known SAP-
modules (e.g. FI, CO, MM, PP, etc.) to components (SAP
1997b). This indicates an attempt to establish an (proprietary)
industry standard, allowing third-party suppliers to make their
software systems SAP-aware.

In addition, there are other efforts to develop standards for
BCs based on Java, as the San Francisco project at IBM (IBM
1997), or Sun’s Enterprise JavaBeans (Sun Microsystems 1999a).

A lot of work is also done in the research field of reference
models. Reference models give recommendations for the design

This paper appears  in  Challenges of Information Technology Management in the 21st Century,  the proceedings  of the Information Resources Manage-
ment Association International  Conference.  Copyright © 2000, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4481
IDEA GROUP PUBLISHING



162   •  IT Management in the 21st Century

of information systems at the business level, e.g. (Scheer 1994).
These contributions can be classified as preliminary, but never-
theless necessary for component-oriented software development,
since reference models classify and arrange tasks at the business
level without defining any software components or proposing how
to derive them.

2 OPEN RESEARCH TASKS
Before specifying BCs an identification and standardization

process has to be carried out, which is part of the domain analysis
(Prieto-Díaz 1987). Despite different current efforts focussing on
identifying BCs for business application domains, commonly ac-
cepted results are still missing. However, a closer look to business
domains reveals that a lot of research work has already been done
acquiring conceptual models describing these domains, e.g.
(Mertens/Griese 1993), (Scheer 1994), (Becker/Schütte 1996),
(Mertens/Griese 1997). Representing a snapshot of certain appli-
cation domains, these models can serve as a starting point to de-
rive potential BCs. The steps from a given conceptual model to
BCs will be shown in detail in the next section. We do therefore
not propose yet another standardized component model, but pro-
vide a procedure which eases and supports any given standardiza-
tion endeavor.

Another problem that has to be addressed when identifying
BCs is the right granularity. BCs may be defined at every level
between a coarse grained granularity, like materials management,
or a fine level, like stock keeping, calculating demands, and ad-
ministering bills of materials. At the lowest level, BCs are equal to
the processed data objects, e.g. bill of materials, part, demand,
asset account, etc.

Depending on the level at which business objects are de-
fined, several assets and disadvantages are identifiable. Coarse-
grained BCs, like materials management, limit customers as well
as suppliers. Customers, who only need a certain functionality pro-
vided by a given BC (e.g. stock keeping) in addition to an existing
business application system have to deploy the whole BC with all
the functional overload. Suppliers of coarse-grained BCs have to
design, implement, and test a relative huge BC hindering a short
time to market, which is a key success factor in the ERP-software
business. On the other hand, too fine-grained BCs may have nega-
tive influence on the system’s performance, because a large num-
ber of fine-grained BCs, neatly connected through well-defined
interfaces, is necessary to support a business process.

As a conclusion, BCs of relatively fine granularity should
be standardized to allow suppliers to assemble and sell them as
specific and competitive components. To make this conclusion
operable it is necessary to develop a way to measure the appropri-
ateness of the granularity from the domain, and as a trade-off, from
the technical point of view.

Furthermore, the problems of task- and data-related redun-
dancies, communication, and coordination between BCs have to
be addressed. Interfaces at a technical and a business level con-
nect the parts of a component-based application system. Techni-
cal interfaces mainly manage communication between components.
Interfaces at the business level support business task-related com-
munication at a semantic level. This allows a coordinated coop-
eration of different BCs to execute a given business task.

At the business level two different types of business-related
dependencies, implemented as interfaces of a BC, may be distin-
guished: One kind leads to interfaces that are responsible for ac-
cessing data objects, the other type triggers business functions.
Assuming that two BCs, materials requirements planning and in-
ventory management, have to cooperate in order to cover the func-
tional demands of the materials management of a given company.
Both BCs are using part-related data, since a part is the basic ele-
ment on which demand is calculated. Inventory management cal-
culates the stock and the reserve stock on the part data. Moreover,
materials requirements planning has to use information, e.g. fu-
ture stock of a given part that have to be calculated by inventory
management. For this reason, the inventory management BC has
to provide a standardized functional interface that can be used by
the materials requirements planning BC.

By definition, BCs offer services, but do not know anything
about other BCs. Therefore, other software parts are necessary to
support the execution of processes at the business level and to
solve rising conflicts. Furthermore, a conflict solving method is
necessary if deployed BCs partially overlap, e.g. two different BC
provide the same function calculate future stock, or both contain
objects of the type part. Suitable middleware assuring the coop-
eration at the technical level has to be specified. This middleware
has to solve the rising conflicts by choosing the right functions
and the right data. Consequently, we will focus on the identifica-
tion task of BCs. Although the approach presented herein does not
directly solve other mentioned problems, it will support the solu-
tion finding process (e.g. to find conflicting BCs).

3 IDENTIFYING BCS USING CONCEPTUAL
MODELS

A standard for BCs should have at least the following char-
acteristics. It should provide maximum flexibility for customers as
well as for suppliers. For the supplier it is important that he has a
high degree of freedom defining his BCs to gain an advantageous
market position and to provide components for similar or even
intersecting application areas as other suppliers. From the
customer’s point of view, BCs should be easy to exchange as a
whole or in parts to support business changes. For these reasons, it
has to be assured that any given set of BCs may work together and
that eventually arising conflicts are solved automatically.

To assure that BCs are freely ex-
changeable and conflicts are solvable,
the use of elemental BCs is suggested.
By definition, a BC may be built out
off other BCs. An elemental business
component (eBC) is defined as a BC
that is not further subdivided. It is
atomic in the sense that there does not
exist any “smaller” BC sharing a sub-
set of data or functions that are cov-
ered by any eBC. Elemental BCs are
the basic (logical) units that are used
to solve conflicts and to offer data or
functionality. In contrast to business

Figure 1: Identifying BCs



2000 IRMA International Conference •  163

objects, an eBC may contain, implement, or produce several of
these real-world objects, depending on their interdependence and
granularity. However, in some case an eBC may appear to be a
factory that creates and manages a certain business object. As-
sume, e.g., a business object order. This may be an instance of a
class order. In contrast, an eBC order would offer services com-
parable to a database management system, which is specialized to
create, hold, and search entities of the type order (which in re-
verse might be business objects of the type order).

In the following, eBCs are primarily used to standardize in-
terfaces and services and to allow the building of supplier-specific
BCs by assembling BCs out of eBC. The suggested approach is
based on two hypotheses:
• Elemental BCs can be derived out of existing conceptual mod-

els.
• Cooperation and conflict solving between any market-relevant

BCs may be achieved using eBCs.
This contribution focuses on the first hypothesis. The sec-

ond hypothesis is discussed in detail in (Fellner/Rautenstrauch/
Turowski 1999).

The following example, which describes the proposed ap-
proach, uses the well-known reference model given in (Scheer
1994) as starting point for the identification of eBCs. Elemental
BCs are identified and generated out of extended Event driven
Process Chain (eEPC) diagrams (Keller/Nüttgens/Scheer 1992,
pp 32-35) and the corresponding data models, which are part of
the reference model. We use a simplified representation without
organizational units and entity attributes to illustrate the proce-
dure on the basis of an extract of a materials requirements plan-
ning (MRP) model (Scheer 1994, p. 170) (fig. 2a):
• Each function object and information (entity) object in the eEPC

is mapped to a corresponding BC (fig. 1).
• As result, a preliminary set of eBCs is generated (fig. 2b). In

contrast to object-oriented concepts, applying classification is
used to identify eBCs. The model parts of the eEPC are di-
vided into functional and information objects to simplify the
identification task (cf. Turowski 1997, pp. 100). Functional
objects represent dynamical aspects or business tasks, whereas
information objects describe application or control data. In con-
trast to common object-oriented approaches, data and functions
are not somehow recombined in later steps. The idea to distin-
guish between different kinds of objects can be found as well
in literature, e.g. Jacobson distinguishes between interface, en-
tity, and control objects (Jacobson 1995, pp. 174-200), Müller-

Luschnat et al. suggest task and storage classes (Müller-
Luschnat/Hesse/Heydenreich 1993, pp. 78-86), and Kueng et
al. use role, business, and storage classes (Kueng/Bichler/
Schrefl 1996, p. 48).

• To identify further eBCs, a more detailed data model, which
corresponds to the process model used so far and that is part of
the reference model, is taken into account. The data model is
presented in a separate view within the reference model. It con-
tains the information objects given in the eEPC. In addition, it
encompasses the relation between the respective information
objects as relationship types. Information objects given in the
eEPC normally correspond to entity types in the data model.
The data model is used to examine eBCs in more detail, which
are related to information objects. The business tasks are not
further subdivided. Each of the identified business tasks be-
comes an eBC. However, this does only work, if a specific
abstraction level of the reference model is used. In common,
reference models encompass different views (e.g. data view or
process view) and different abstraction levels. Choosing the
right abstraction level is crucial for the proposed approach, as
this effects the identification of eBCs. In general, the follow-
ing abstraction levels are distinguished: With respect to the data
view, one distinguishes between cluster, entity, and attribute
level. With respect to the process view, one distinguishes be-
tween business process, business function, and task level. For
the proposed approach, the second level of abstraction (entity/
business function level, cf. fig. 3 or fig. 4) works best, since
eBCs become to fine-grained on attribute level and to coarse-
grained on cluster level.

• First, generalization and specialization relations are examined
in the data model. Doing so, reveals that gross demand as well
as net demand are both special kinds of demand, leaving the
single eBC demand that replaces the eBCs gross demand and
net demand (cf. fig. 3a). This is done to achieve the smallest
reasonable set of eBCs.

• Next, relationships are examined in the data model. Relation-
ships lead to eBCs, too. Relationship types are considered to
be eBCs, because they often become interpreted as entities,
e.g. order may also be seen as relation between customer, parts,
and time, or have attributes of its own. Thus, they are potential
candidates for being replaced by other BCs from different ven-
dors. With this, the preliminary set of eBCs has to be extended
by coverage, demand coverage, and demand derivation (cf.
fig. 3a).

• Last, the final set of eBCs is cre-
ated (cf. fig 3b).

After all (relevant) eBCs are identified,
they are composed in a certain way to form a
BC that supports a (sub-)set of a given busi-
ness process. If a certain eBC should be added
to a BC depends on the underlying applica-
tion domain and has to be taken into consider-
ation for every eBC. At this stage, any identi-
fied eBC may be used in any BC where it suits.
Therefore, when these “first-cut” BCs are built
up, they have to be thoroughly examined for
contained eBCs. Fig. 4a depicts a possible al-
location of eBCs in higher level BCs. It also
shows that some eBCs may be implemented
in more than one BC depending on the busi-
ness area a model is built for.

To discover redundant eBCs multiple
occurrences of the same eBC are eliminated

Figure 2: Part of an eEPC diagram for materials requirements planning



164   •  IT Management in the 21st Century

(cf. fig. 4b). The result is the graphical representation of fig. 3b
with the additional information of overlapping BCs. Only for those
eBCs appearing in more than one BCs (asset account in the ex-
ample) conflicts can occur and have to be solved by defining a
clear strategy which BC manages the concerned eBCs. Elemental
BCs appear in more than one BC if they are shown in an overlap-
ping region. Any other BC can access this eBCs through the inter-
face provided and implemented by the managing BC. Hence, it
follows that using eBCs allows an unequivocal identification of
overlapping BCs as well as fast conflict detection and solving.

4 EVALUATION
We implemented an application system for production plan-

ning and control, which uses the described approach to identify
eBCs, as a research prototype. BCs are composed of previously
identified and implemented eBCs. Their identification was car-
ried out following the mentioned steps. Besides the eBCs men-
tioned above, additional eBCs were implemented, e.g. customer
order or bill of materials. The actual procedure was also chosen to
test the interchangeability of specific eBCs by providing parts of
the functionality through legacy systems. In our prototype imple-
mentation, we use SAP R/3 (Rel. 4.0b) to show and test integra-
tion aspects.

Implemented in Java and composed using IBM’s Visual Age
for Java, the prototype was produced using state-of-the-art tech-
nology and systems. One of the major reasons why Java was cho-
sen, is the availability of a component API, the JavaBeans
(Sun Microsystems 1997), which are by definition self-contained
components.

To show the integration of existing systems, we used the
Business Application Programming Interface (BAPI) (SAP 1997a)
of SAP to connect to their system R/3. Here we found a way to
reuse existing components by means of the InfoBus technology
from Lotus (Sun Microsystems 1999b) as well as Java compo-
nents (Enterprise Access Builder) from IBM, which allow a fast
and easy first-cut connection to R/3.

First tests brought promising results. The implemented eBCs
are interchangeable, as long as they provide the specified services.
However, the composition of a BC consisting of a huge number of
eBCs may become confusing. Therefore, we work on an approach
to compose eBCs providing more (and conflicting) services. To

allow eBCs with conflicting services,
a mechanism has to be provided to
solve content-related conflicts. There-
fore we proposed an approach using a
special kind of mediating components
in (Fellner/Rautenstrauch/Turowski
1999).

The problem of finding BCs is
closely connected to the problem of
finding the right object, which is well-
known from the area of object orienta-
tion (cf. e.g. Kurbel/Teubner 1996, pp.
243-245). An approach that is related
to our contribution may be found in
(Bungert/Heß 1995). There, the authors
suggest an approach to identify (object)
classes from conceptual models. An-
other approach is given in (Ferstl et al.
1997, pp. 38-44), which analyses pro-
cess models based on Petri Nets.

5 OUTLOOK AND CONCLUSIONS
Using eBCs offers a possible way to build flexible supplier

specific BCs for the area of business application systems. They
allow suppliers to offer BCs that cover partially intersecting ap-
plication areas, provide an easy way to exchange BCs or parts of
BCs, help to solve conflicts, and can be identified using existing
conceptual models. An approach to identify eBCs using reference
models was discussed in this paper together with an interim defi-
nition of eBCs from the area of materials management, which has
to be further expanded to a model covering the whole area of pro-
duction planing and control.

Besides further extension and evaluation of the existing pro-
totype, future work will also include using standardized specifica-
tion languages as discussed in the first section. So far, interfaces
are solely defined using Java. In addition, standardization at the
attribute level as well as standardization of interfaces and services
will be taken into account.

REFERENCES
Becker, J.; Schütte, R. (1996): Handelsinform-ationssysteme.

Landsberg.
Beugnard, A.; Jézéquel, J.-M.; Plouzeau, N.; Watkins, D. (1999):

Making Components Contract Aware. IEEE Computer 32(7),
pp. 38-44.

Brown, A. W.; Wallnau, K. C. (1996): Engineering of Compo-
nent-Based Systems. In: Component-Based Software Engineer-
ing: Selected Papers from the Software Engineering Institute.
Ed. A. W. Brown. Los Alamitos, California, pp. 7-15.

Bungert, W.; Heß, H. (1995): Objektorientierte
Geschäftsprozeßmodellierung. Information Management 10(1),
pp. 52-63.

Fellner, K.; Rautenstrauch, C.; Turowski, K. (1999):
Fachkomponenten zur Gestaltung betrieblicher
Anwendungssysteme. IM Information Management & Consult-
ing 14(2), pp. 25-34.

Fellner, K.; Turowski, K. (2000): Classification Framework for
Business Components. To appear in: R. H. Sprague (Ed.) Pro-
ceedings of the 33rd Annual Hawaii International Conference
On System Sciences. Maui, Hawaii, (CD-ROM), 10 pages.

Ferstl, O. K.; Sinz, E. J.; Hammel, C.; Schlitt, M.; Wolf, S. (1997):
Bausteine für komponentenbasierte Anwendungssysteme.
HMD 34(197), pp. 24-46.

Figure 3: Data model and derivation of the final set of eBCs



2000 IRMA International Conference •  165

IBM (Ed.) (1997): San Francisco Project Technical Summary. http:/
/www.ibm.com/Java/Sanfrancisco/prd_ summary.html. Ac-
cessed: 16.06.1998.

Jacobson, I. (1995): Object-Oriented Software Engineering. 6. ed.,
Wokingham.

Keller, G.; Nüttgens, M.; Scheer, A.-W. (1992): Planungsinseln -
Vom Konzept zum integrierten Informationsmodell. HMD
29(168), pp. 25-39.

Kueng, P.; Bichler, P.; Schrefl, M. (1996):
Geschäftsprozeßmodellierung: Ein zielbasierter Ansatz. Infor-
mation Management 11(2), pp. 40-50.

Kurbel, K.; Rautenstrauch, C.; Opitz, B.; Scheuch, R. (1994): From
»Make or Buy« to »Make and Buy«: Tailoring Information
Systems Through Integration Engineering. Journal of Database
Management 5(3), pp. 18-30.

Kurbel, K.; Teubner, A. (1996): Integrating Information-system
Development into Business Process Reenginering. In: C. Nagib;
C. Callaos (Eds.): Proceedings of the International Conference
on Information Systems Analysis and Synthesis. Orlando, pp.
240-246.

Mertens, P.; Griese, J. (1993): Planungs- und Kontrollsysteme in
der Industrie. Vol. 2, 7. ed., Wiesbaden.

Mertens, P.; Griese, J. (1997): Administrations- und
Dispositionssysteme in der Industrie. Vol. 1, 11. ed., Wiesbaden.

Müller-Luschnat, G.; Hesse, W.; Heydenreich, N. (1993):
Objektorientierte Analyse und Geschäftsvorfallsmodellierung.
In: Objektorientierte Methoden für Informationssysteme. Eds.:
H. Mayr; R. Wagner. Berlin, pp. 74-90.

Nierstrasz, O. (1995): Research Topics in Software Composition.
In: A. Napoli (Ed.) Proceedings, Langages et Modèles à Ob-
jects. Nancy, pp. 193-204.

OAG (Ed.) (1997): White Paper: Open Applications Integration:
Projects of the Open Applications Group.

OMG (Ed.) (1996): Common Facilities RFP-4: Common Busi-
ness Objects and Business Object Facility.

OMG (Ed.) (1997): CORBA Component Model RFP. ftp://
ftp.omg.org/pub/docs/orbos/97-06-12.pdf. Accessed: 21.
01.1998.

OMG (Ed.) (1998): The Common Object Request Broker: Archi-
tecture and Specification (Revision 2.2).

Orfali, R.; Harkey, D.; Edwards, J. (1996): The Essential Distrib-
uted Objects Survival Guide. New York.

Prieto-Díaz, R. (1987): Domain Analysis for Reusability.
COMPSAC 87. Tokyo, Japan, pp. 23-29.

Rational Software; Microsoft; Hewlett-Packard; Oracle;
Sterling Software; MCI Systemhouse; Unisys;
ICON Computing; IntelliCorp; i-Logix; IBM; ObjecTime;
Platinum Technology; Ptech; Taskon; Reich Technologies;
Softeam (1997): Object Constraint Language Specification:
Version 1.1, 1 September 1997. http://www.rational.com/uml.
Accessed: 17.04.1999.

Saake, G. (1993): Objektorientierte Spezifikation von
Informationssystemen. Stuttgart.

Sametinger, J. (1997): Software Engineering with reusable com-
ponents. Berlin.

SAP (Ed.) (1997a): BAPI-Programmierleitfaden. Walldorf.
SAP (Ed.) (1997b): BAPIs - Einführung und Überblick. Walldorf.
Scheer, A.-W. (1994): Business Process Engineering: Reference

Models for Industrial Enterprises. 2. ed., Berlin.
Sun Microsystems (Ed.) (1997): JavaBeans: JavaBeans API Speci-

fication 1.01. Mountain View.
Sun Microsystems (Ed.) (1999a): Enterprise JavaBeans Specifi-

cation, v1.1. Mountain View.
Sun Microsystems (Ed.) (1999b): InfoBus 1.2 Specification. Moun-

tain View.
Szyperski, C. (1998): Component Software: Beyond Object-Ori-

ented Programming. 2. ed., Harlow.
Turowski, K. (1997): Flexible Verteilung von PPS-Systemen -

Methodik Planungsobjekt-basierter Softwareentwicklung.
Wiesbaden.

Turowski, K. (2000): Establishing Standards for Business Com-
ponents. To appear in: IT Standards and Standardisation: A
Global Perspective. Ed. K. Jakobs. Hershey, pp. 131-151.

Figure 4: Possible allocation of eBCs in higher level BCs and overlapping BCs



 

 

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/identifying-business-components-

using-conceptual/31527

Related Content

Introducing ITIL Framework in Small Enterprises: Tailoring ITSM Practices to the Size of

Company
 Abir El Yamami,  Khalifa Mansouri,  Mohammed Qbadouand  El Hossein Illoussamen (2019). International

Journal of Information Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/introducing-itil-framework-in-small-enterprises/218855

A Network Intrusion Detection Method Based on Improved Bi-LSTM in Internet of Things

Environment
Xingliang Fanand Ruimei Yang (2023). International Journal of Information Technologies and Systems

Approach (pp. 1-14).

www.irma-international.org/article/a-network-intrusion-detection-method-based-on-improved-bi-lstm-in-internet-of-things-

environment/319737

Ethical Computing
Wanbil W. Lee (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2991-

2999).

www.irma-international.org/chapter/ethical-computing/112723

N-Tuple Algebra as a Generalized Theory of Relations
Boris A. Kulikand Alexander Y. Fridman (2021). Encyclopedia of Information Science and Technology, Fifth

Edition (pp. 685-700).

www.irma-international.org/chapter/n-tuple-algebra-as-a-generalized-theory-of-relations/260222

An Interactive Ecosystem of Digital Literacy Services: Oriented to Reduce the Digital Divide
José Eder Guzmán-Mendoza, Jaime Muñoz-Arteaga, Ángel Eduardo Muñoz-Zavalaand René Santaolaya-

Salgado (2015). International Journal of Information Technologies and Systems Approach (pp. 13-31).

www.irma-international.org/article/an-interactive-ecosystem-of-digital-literacy-services/128825

http://www.igi-global.com/proceeding-paper/identifying-business-components-using-conceptual/31527
http://www.igi-global.com/proceeding-paper/identifying-business-components-using-conceptual/31527
http://www.irma-international.org/article/introducing-itil-framework-in-small-enterprises/218855
http://www.irma-international.org/article/a-network-intrusion-detection-method-based-on-improved-bi-lstm-in-internet-of-things-environment/319737
http://www.irma-international.org/article/a-network-intrusion-detection-method-based-on-improved-bi-lstm-in-internet-of-things-environment/319737
http://www.irma-international.org/chapter/ethical-computing/112723
http://www.irma-international.org/chapter/n-tuple-algebra-as-a-generalized-theory-of-relations/260222
http://www.irma-international.org/article/an-interactive-ecosystem-of-digital-literacy-services/128825

