
430 • IT Management in the 21st Century

Automatic Generation of Requirement
Scenarios

Gyeung-min J. Kim
School of Business Administration, Portland State University, Post Office Box 751, Portland, Oregon 97207-0751, Ph: (503) 725-3707, Fax: (503) 725-

5850, joank@sba.pdx.edu

Rohae Myung
Department of Industrial Engineering, Korea University, 5-1, Anan-Dong, Seongbuk-Gu, Seoul, Korea, Ph: (822)-3290-3392, Fax: (822)-929-5888,

rmyung@kuccnx.korea.ac.kr

ABSTRACT
Participatory Design (PD) methodology has been used to develop user acceptable systems by accommodating various needs of users at the
early stage of system development. However, PD is considered difficult to use because of the lack of tools and techniques. This research
developed a theoretical framework for automatic generation of requirement scenarios, each of which describes a possible user requirement
for the system. Automatically generated requirement scenarios trigger users to identity missing or unnecessary user requirements and allow
users to address what should be and what should not be developed.

1. INTRODUCTION
Failure in identifying user requirements at the early stage of system

development leads to resistance from the user group in use of the system.
It has been reported that failure in Business Process Re-engineering (BPR)
projects is resulted from lack of consideration for human factors issues
involved in the introduction of a new technology [Davenport, 1995]. Since
BPR is initiated by top-management with assistance from BPR consult-
ants, the requirement of the system is determined based not on user’s job
satisfaction needs, but on corporate BPR objectives.

Participative Design (PD) methodology has a long history in
Scandinavia as an approach to developing user acceptable systems [Carmel
et al, 1993]. Regardless of whether the system is an information system or
an electronic device, the purpose of PD is to improve usability of the sys-
tem by accommodating users’ perspectives on system uses. Even though
PD receives attention from academic circles in Information Systems (IS)
area, PD acceptance by North American IS practitioners is relatively low
[Carmel et al, 1993]. One of the difficulties in use of PD is attributed to
lack of tools and techniques that ease the task of participating users and
analysts [Kensing and Munk-Masden, 1993; Greenbaum, 1990].

PD community recognized that identification of use case scenarios
describing possible uses of future systems at the front end of the system
development is beneficial for developing right system requirements
[Greenbaum and Kyng, 1991; Jacobson, 1992; Brown, 1997]. However,
brainstorming is a typical methodology for users to create use case sce-
narios during PD session, which heavily depend on the people skill and
experiences of the analysts [Brown, 1997; Ambler, 1995].

According to Nielsen [pp. 88-89, 1993], “It is important to realize that
users are not designers, so it is not reasonable to expect them to come up
with design ideas from scratch … it is important to realize that participa-
tory design should not just consist of asking users what they want, since
users do not know … even what the possibilities are”. Nelson indicates the
need for tools and techniques to help users identify what they want.

In order to help users identify their user requirements, the objective of
this study is to investigate possibilities of generating requirement scenarios
automatically. A requirement scenario describes an alternative idea about
user requirements. This paper takes the position that the requirement sce-
narios provide cues to foster user creativity during PD session. Users com-
pare and reason about alternative requirement scenarios, which results in
revising/eliminating the alternative user requirements or devising new ones.
The revised and devised requirements are included in the final user re-
quirements. During this process, various users’ needs and issues are ad-
dressed and reflected on the requirement specification. As results, users
will be more satisfied with the system; and the system will be more usable.

In order to fulfill the objective of this research, the following research
questions are put forth:
1) What are the underlying concepts and techniques of the idea genera-

tion tools that can guide the automatic generation of requirement sce-
narios?

2) Given understanding of idea generation, what are the elements of user
requirements that must be represented and manipulated by the tool to
generate requirement scenarios?

3) What is the method of representing the elements in order to generate
requirement scenarios?
The subsequent two sections investigate the first two questions. Then,

the last question will be addressed. Finally, conclusion of this study is
presented.

2. IDEA GENERATION
Referred to as problem formulation process in decision sciences, un-

derstanding problem domain consists of two complementary subprocess
of information search and equivocality reduction [Daft and Lengel, 1986;
Weick, 1979; Simon, 1977]. Through information search, different view-
points and issues of the problem are uncovered and broad understanding
of the problem domain is generated [Niederman and Desanctis, 1995].
Consensus on the problem is made through equivocality reduction. As re-
sults, what should be considered and excluded from the subsequent steps
of problem solving are determined [Niederman and Desanctis, 1995; Nutt,
1992].

Compared to heuristics and tools to support problem formulation in
general, the tools designed to support information search stage of problem
formulation are categorized as idea generation tool. The idea generation
tool simulates human’s divergent thinking mode, making many connec-
tions among problem elements and generating alternative ideas
[MacCrimmon and Wagner, 1994; de Bono, 1993; Young, 1991; Ackoff
and Vergara, 1981; Guilford, 1967]. In the example of a design of a trans-
portation system [Young, 1991], generic dimensions of the system are first
identified: Power Source, Load Container and Control system. Then, pos-
sible alternatives for each dimension are identified below.

Power Source: Coal-Steam, Electric.
Load Container: Conveyor Belt, Flat Car, Enclosed vehicle.
Control system: Manual, Automatic.
Then combinations of values of each dimension comprise a total de-

sign concept:
1) Coal-Steam/Conveyor Belt/Manual.
2) Coal-Steam/Conveyor Belt/ Automatic.
3) Electric /Conveyor Belt/Manual, etc…

This paper appears in Challenges of Information Technology Management in the 21st Century, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2000, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4499
IDEA GROUP PUBLISHING

2000 IRMA International Conference • 431

The presentation of the alternatives triggers human’s thinking and re-
sults in either identification of the new ideas or modification/elimination
of the existing ideas in the alternatives.

According to MacCrimmon and Wagner [1994], problems can be ana-
lyzed in many different perspectives such as attributes, functions, or pur-
poses-means of the problem. Connections of these problem elements can
also come in many different ways. In relational combinations [MacCrimmon
and Wagner, 1994, Crovitz, 1970], the problem elements are combined by
means of randomly selected relational words such as “above”. The pur-
pose of this technique is to show familiar problem elements in a randomly
constructed sentence to induce thought about new connections between
problem elements.

Given the goal of a system, user requirement determination (RD) for
the system is a continuous process of understanding and analyzing the
problem domain to determine what should be developed as well as what
should not be developed. During this process, the general problems are
refined and clarified; the potential problems are uncovered; and the ways
to improve or solve the problems are identified. Like problem formulation
in decision making, requirement formulation comprises two complemen-
tary subprocesses of information search and equivocality reduction. The
people involved in RD search for information to determine the problems
and look for alternative ways to make their work process better. In this
sense, some of concepts and techniques used in idea generation tools to
support problem formulation can be applied to the development of idea
generation tools to support requirement formulation. In the subsequent
section, the following issues will be addressed: (1) how the user require-
ments are analyzed; (2) what are the elements in user requirements; and
(3) how the identified requirement elements are connected to promote idea
generation during requirement formulation process.

3. REQUIREMENT ELEMENTS AND
REQUIREMENT SCENARIOS

User requirement is analyzed in many perspectives, one of which is
object-oriented methodology. In object-oriented analysis, requirements are
analyzed from perspective of objects such as people or machinery com-
prising the problem domain. First, individual objects are investigated to
find the individual needs or wants from the system (i.e. individual require-
ments). Then, relationships of individual objects are studied to determine
what organizational requirements may be necessary in order to make the
system functional in the user’s environments. As results, user requirements
are formulated in terms of (1) the new services that objects (human actors,
organizational units, and system) should provide and (2) the interactions
among the objects to achieve the services assigned to the objects. Examples
are shown below:

Examples of User Requirements
1. Sales Department should be able to tell customer an estimated deliv-

ery date with a support from computer.
2. System accesses inventory information by looking up inventory data-

base.
3. System provides inventory information to the sales department.
4. System receives orders through Internet.

In these examples, main objects are: sales department and system as
well as order, inventory and customer. “Tell customer an estimated deliv-
ery date with a support from computer”, “access inventory information by
looking up computer”, “provide inventory information to the sales depart-
ment “, and “receives order through Internet” are services of the objects.
While the first service is performed by the sales department object, the last
three are performed by the system. The combination of an object and its
service is considered as Requirement Element (RE). For example, the com-
bination of an object, “sales department” and its service, “tells customer
an estimated delivery date with a support from computer” results in a RE,
“sales department tells customer an estimated delivery date with a support
from computer”. REs are building blocks of user requirements. A collec-
tion of REs represents a set of user requirements for the system.

The discovery of REs and their relationships, is a difficult task for
end-users and heavily dependent upon the experiences and skill of ana-
lysts. A supporting tool for this procedure is the one that can generate al-
ternative connections among various REs drawn from similar situations to
the user’s domain. Theoretically, the alternatives have possibilities of trig-
gering user’s idea generation on their own REs and their relationships.

In order to support requirement formulation process, idea generation
tool must provide ways to represent and connect the candidate REs to gen-
erate alternative ideas about user requirements. For this purpose, a RE is
denoted as object.service representing that the object provides the service.
The REs are categorized according to the type of service that each RE falls
into. Consider the following exemplar REs:

RE1: System.Receive_Orders_Through_Internet.
RE2: Sales.Receive_Orders_From_Floor.
RE3:
System.Access_Inventory_Information_By_Looking_Up_Inventory_Database.
RE4: Sales.Access_Inventory_Information_By_Calling_To_
Warehouse.

While the first two REs are categorized as the service type,
RECEIVE_ORDER, the last two are categorized as the service type,
CHECK_INVENTORY. Each RE represents an alternative way of provid-
ing a certain type of service by an object.

A series of REs is called as a Requirement Scenario (RS). Examples
are shown below:

RS1={RE1, RE3}
RS2={RE1, RE4}
RS3={RE2, RE3}
RS4={RE2, RE4}
Each RE in the RS must have a different service type. In the Require-

ment Scenario, RS1, while the type of RE1 is RECEIVE_ORDER, the
type of RE2 is CHECK_INVENTORY. RS1, describes an alternative set
of user requirements: (1) system receives orders through Internet and (2)
system accesses inventory information by looking up inventory database.
The rules like syntax in linguistics are used to describe valid arrangements
of the REs. An exemplar rule is that the services of RECEIVE_ORDER
are prerequisite for the services of CHECK_INVENTORY. This rule rep-
resents temporal constraints between services.

Each RS is generated automatically and describes an alternative idea
about user requirements. The RS provides cues to foster user creativity
during participatory design. The RS triggers users to identify missing or
unnecessary user requirements and correct misunderstood requirements.
By either selecting or modifying one or more RSs, the users formulate
their final requirements for the system. As results, users will be more sat-
isfied with the system and the system will be more usable.

The next section discusses the issues such that (1) how an inventory
of REs can be obtained; and (2) how the rules of combining the REs are
represented to generate RSs.

4. AUTOMATIC GENERATION
OF REQUIREMENT SCENARIO

4.1 The Source of Requirement Elements
Many companies have similar kinds of business processes, each of

which consists of the similar types of services. However, each company
implements its services with a different set of means. The first column in
table 1 lists the types of services comprising the customer order process.
The table indicates that every customer order consists of a generic sequence
of services such as RECEIVE_ORDER, CHECK_INVENTORY, and
PROCESS_ORDER [Malone, 1993]. For each service type, each of the
second and third columns shows a specific means to implement the ser-
vice type. Case 1 illustrates the process where the service type,
RECEIVE_ORDER is accomplished by receive_order_from_Internet. Case
2 describes the process where RECEIVE_ORDER, is implemented by

Table 1. Requirement Elements (REs) in Customer Order process
S: Sales department, W: Warehouse, SH: SHipping department

Service Types Case 1 Case 2 …
RECEIVE ORDER S.Receive_order_ S.Receive_order_

from_Internet from_floor
CHECK_ S.Look_up_ S.Look_up_
INVENTORY computer computer
PROCESS_ORDER S.Send_copy_to_ S.Put_order_into_

warehouse computer
S.Notify_to_shipping S.Schedule_delivery
SH.Schedule_delivery W.Check_order
SH.Call_to_customer SH.Move_product
SH.Move_product

432 • IT Management in the 21st Century

receive_order_from_floor. The character proceeding a dot (.) operator shows
the object who carries out the service: S for Sales Department, SH for
Shipping and W for warehouse. The inventory of REs for a service type
can be obtained from cases of many companies engaging in the similar
process. Given the inventory of the REs for each service type, RSs can be
generated.

An RS is a series of REs, describing a sequence of the services per-
formed by objects to complete a work process. For example, the require-
ment scenario, RS1, in the previous section describes a sequence of ser-
vices by various objects engaging in customer order process: (1) system
receives orders through Internet and (2) system access inventory informa-
tion by looking up inventory database. In this study, Process Grammar
[Pentland, 1995] is used to represent the temporal relationships among
REs as linguistic grammar is used to represent the sequential relationships
of words. Since the RSs generated based on the grammar, describe a valid
work process, the grammar is named as Process Grammar.

4.2 Process Grammar
 Although the most familiar type of grammar is English grammar, gram-

mar has been used in many areas to describe a set of possible patterns such
as circuit patterns in semi-conductor wafer. While linguistic grammar de-
fines a set of valid sentences in a language, circuit grammar defines a set
of valid shapes of electronic circuits.

The basic elements of a grammar is called a lexicon [Miclet, 1986] or
token. They are treated analytically as the most detailed level of descrip-
tion necessary for the problem at hand. An example of the lexicon is a
word of a language. The next level of the grammatical component is called
syntactic constituents. In linguistics example, words or phrases are cat-
egorized into different syntactic constituents such as noun phrases or verb
phrases according to a particular function that each category serves in the
syntax of sentence. These constituents can be combined according to gram-
matical rules to create sentences. Figure 1 shows hierarchical relationships
among grammatical components in linguistics.

A grammar provides a framework for generating new instances of a
set. In linguistic grammar, a number of valid sentences can be generated
from a pool of words. Each sentence is an instance of a certain grammati-
cal rule. For example, from a set of verbs {eats, washes} and a set of nouns
{dog, apple}, the following sentences can be generated: “dog eats apple”,
“dog washes apple”, “apple eats dog” and “apple washes dogs”. Each sen-
tence is a distinct case of the rule, noun verb noun.

In our study, a Requirement Element (RE) is considered as a token.
As words are categorized into noun based on their functionality, REs are
categorized according to the type of the services that each RE falls into.
Thus, the service types are syntactic constituents in this study. Syntactic
constituents have the following characteristics [Pentland,1992]:
1) provide a way of describing the structural features of a pattern without

elaborating it all the way down to the specifics of the token.
2) can be nested together.

The service type such as RECEIVE_ORDER meets the first charac-
teristics since it generalizes receive_order_by_mail,
receive_order_from_floor and other ways of receiving orders. The service
type, PROCESS_ORDER is a nested with another service type,
F I L L _ O R D E R _ F R O M _ S T O R E ,
FILL_ORDER_FROM_OTHER_STORE, or
FILL_ORDER_FROM_ON_ORDER.

The ‘service types’ are combined according to the various constraints
such as temporal and job-control constraints [Pentland, 1995]. For example,
the service, CHECK_INVENTORY must be performed later than
RECEIVE_ORDER. The constraints govern the way REs are arranged in

order to create Requirement Scenarios (RSs). Figure 1 describes relation-
ships among components of the process grammar along with those of the
linguistic grammar.

The grammar in Figure 2 describes the grammar for Customer Order
Process (COP). Each rule in the grammar has a number for reference. The
symbol “->” is read as “consists of.” While a bolded element (e.g.
S.receive_order_from_floor) is a “RE”, an element in upper case fonts
(e.g. RECEIVE_ORDER) is a “service type”. The element in italic font
(e.g. CUSTOMER_ORDER_PROCESS) represents the domain of the sys-
tem for which user requirements are developed.

Rule 1 dictates that the Requirement Scenarios (RSs) for
CUSTOMER_ORDER_PROCESS consist of a series of service types,
RECEIVE_ORDER, CHECK_INVENTORY and PROCESS_ORDER.
This rule is a generic rule that can be found in any customer order process
across types of businesses. The sequence of these service types is deter-
mined by temporal constraints on them: CHECK_INVENTORY must be
performed after RECEIVE_ORDER and before PROCESS_ORDER.

Although every customer order process has the same types of the ser-
vices, each implements its services with a different set of services. Rule 2
and 3 illustrate such cases. Rule 2 describe the case where
RECEIVE_ORDER is accomplished by the service of the sales depart-
ment denoted as S.receive_order_from_mail.

4.3 Generation of Requirement Scenarios.
COP grammar can be used to generate the following alternative Re-

quirement Scenarios (RS). The RSs are grouped according to a common
functionality.

For receive_order_from_floor:
RS1. return_order

1.1. S.receive_order_from_floor, S.look_up_computer,
S.return_order.

RS2. FILL_ORDER_FROM_STORE
RS2.1.S.receive_order_from_floor, S.look_up_computer,

S.send_copy_to_warehouse, S.notify_to_shipping,
SH.schedule_delivery, SH.call_to_customer,
SH.move_product.

RS2.2 S.receive_order_from_floor, S.look_up_computer,
S.put_order_into_computer, S.schedule_delivery,
W.check_order, SH.move_product.

RS3. FILL_ORDER_FROM_OTHER_STORE
RS3.1.S.receive_order_from_floor, S.look_up_computer,

S.dial_to_store, S.reserve_stock_for_pick_up.
RS3.2.S.receive_order_from_floor, S.look_up_computer,

Figure 1. Relationships among Grammatical Components

Sentence Requirement Scenario

Syntactic Constituent Service Type

Lexicon (Token) Requirement Element

Figure 2. Grammar for Customer Order Process

1. CUSTOMER_ORDER_PROCESS ∅ RECEIVE_ORDER,
CHECK_INVENTORY, PROCESS_ORDER.

2. RECEIVE_ORDER ∅ S.receive_order_by_mail.
3. RECEIVE_ORDER ∅ S.receive_order_from_floor.
4. CHECK_INVENTORY ∅ S.look_up_computer.
5. PROCESS_ORDER ∅ S.return_order.
6. PROCESS_ORDER ∅ FILL_ORDER_FROM_STORE.
7. PROCESS_ORDER ∅

FILL_ORDER_FROM_OTHER_STORE.
8. PROCESS_ORDER ∅ FILL_ORDER_FROM_ON_ORDER.
9. FILL_ORDER_FROM_STORE ∅

S.send_copy_to_warehouse, S.notify_to_shipping,
SH.schedule_delivery, SH.call_to_customer,
SH.move_product.

10. FILL_ORDER_FROM_STORE ∅
S.put_order_into_computer, S.schedule_delivery,
W.check_order, SH.move_product.

11. FILL_ORDER_FROM_OTHER_STORE ∅ S.dial_to_store,
SELECT_PICK_UP_CHOICE.

12. SELECT_PICK_UP_CHOICE ->
S.reserve_stock_for_pick_up.

13. SELECT_PICK_UP_CHOICE -> S.transfer_from_stock.
14. FILL_ORDER_FROM_ON_ORDER ∅

S.reserve_from_on_order.

2000 IRMA International Conference • 433

S.dial_to_store, S.transfer_from_stock.
RS4. FILL_ORDER_FROM_ON_ORDER

RS4.1.S.receive_order_from_floor, S.look_up_computer,
S.reserve_from_on_order.

These alternative RSs provide Participatory Design (PD) group with
insights into new possible alternatives. Besides, each RS reflects various
constraints imposed on grammatical rules. The requirement scenarios al-
low users to identify unnecessary constrains and to modify the existing
constraints to accommodate their needs. For example, presentation of RS
2.2 triggers the shipping department to realize that they want the authority
of scheduling shipping instead of the delivery schedule being given by the
sales department (note that schedule delivery is done by the sales depart-
ment). The requirement scenario, RS2.2 enables PD group to identify needs
of the shipping department for the job autonomy.

The grammar in Figure 2 can be prepared, after system analysts iden-
tify minimum user requirements. That is, after the analysts identify that
the system domain is the customer order process, the grammar for the
customer order process is prepared. The sequence of service types and
possible means to implement each service type can be obtained from cases
of other companies in the similar situations [Malone et al., 1993].

5. CONCLUSION
When novice users are not certain about what to do, they need help.

User participation in design requires techniques and tools that enable end
users to understand the possibilities for computer support [Grønbaek et
al., 1993]. This study demonstrates possibilities of using grammar to gen-
erate requirement scenarios that provide PD groups with bases for brain-
storming user’s various needs. Based on the generated requirement sce-
narios, users can compare and reason about their requirements; identify
missing or unnecessary user requirements; and correct misunderstood re-
quirements. In this way, user oriented issues involved in system require-
ments can be minimized. In addition, the PD group develops user require-
ment more efficiently by having a menu of requirement scenarios rather
then from scratch.

Grammar has capabilities of representing various constraints. Thus,
the grammar generated requirement scenarios can be an efficient medium
to communicate constraints of the system to be developed among IS pro-
fessionals and end-users. The grammar approach is rather a complement
for other PD techniques and tools than a substitute. Grammar can comple-
ment the weakness of the existing PD techniques, that is qualitative in
nature and relies mainly on designer’s experience and low technology
methods [Carmel et al., 1993]. An automated tool to generate alternative
requirement scenarios, which could be a complex sequence of activities,
allows PD to become the norm rather that the exception.

6. REFERENCE
Abell, P., the Syntax of Social Life: The Theory and Method of Compara-

tive Narratives, New York: Clarendon Press.
Ackoff. R. L. and Vergara, E., “Creativity in Problem Solving and Plan-

ning: A Review,” European Journal of Operational Research (7:1), 1981,
pp. 1-13.

Brown, D., An Introduction to Object-Oriented Analysis, Objects in Plain
English, John Wiley and Sons, Inc., 1997.

Carmel, E., Whitaker, R. D., and George J. F., “PD and Joint Application
Design: A Transatlantic Comparison”, Communications of the ACM,
Vol. 36, No.4, 1993, pp. 40-48.

Crovits, H. F., Galton’s Walk, Haper & Row, New York, 1970.
Daft R. L. and Lengel, R. H. , “Organizational Information Requirements,

Media Richness and Structural Design,” Management Science, Vol.
32, No. 5, May 1986, pp. 554-571.

Davenport, T. H., “Will Participative Makeovers of Business Process Suc-
ceed Where reengineering Failed?”, Planning Review, Vol. 23, No.1,
Jan-Feb 1995, pp. 24-29.

De Bono, E., de Bono’s Thinking Course, Facts on file, New York, NY,
1993.

Ehan, P., M‘lleryd, B. and Sj‘gren, D., Playing in reality: A paradigm case.
Scandinavian J. Information Systems, 2 (1990), pp. 101-120.

Ehninger D. and Brockreide W., Decision by Debate, 2nd Ed., New York:
Harper & Row, 1978.

Goffman, E., Forms of Talk, Philadelphia, PA, University of Pennsylvania
Press.

Greenbaum, J., Panel Presentation, Conference on Participatory Design-
PDC’90,(Seattle, Wash., 1990), Author’s notes.

Greenbaum, J. and Kyng, M., Design at Work: Cooperative Design of
Computer Systems, Hillsdale, NJ: Lawrence Erlbaum Associates, 1991.

Guilford, J. P., “The Nature of Human Intelligence”, McGraw-Hill, New
York, 1967.

Jacobson, I. M., Christerson, M., Jonsson, P., and Övergaard, G., Object-
Oriented Software Engineering, New York: Addison-Wesley, 1992.

Kensing, F, and Munk-Masden, A., “PD: Structure in the Toolbox”, Com-
munications of the ACM, Vol. 36, No.4, 1993, pp. 78-85.

Malone, T.W., Crowston, K., Lee, J. and Pentland, B., “Tools for Inventing
Organizations: Towards a Handbook of Organizational Processes,”
Proceedings of the Second IEEE Workshop on Enabling Technologies
Infrastructure for Collaborative Enterprises, Morgantown, WV, April
20-22, 1993.

MacCrimmon and Wagner, K. R. and Wagner C. “Stimulating Idea through
Creativity Software,” Management Science, Vol. 40, No. 11, Novem-
ber 1994, pp.1514-1532.

Miclet, L., “Structural Methods in Pattern Recognition, New York: Springer-
Verlag, 1986.

Niederman F. and Desanctis, G., “The Impact of a Structured-Argument
Approach on Group Problem Formulation, “ Decision Sciences, Vol.
26, No. 4, July/August 1995. pp. 451-474.

Nielsen, J., “Usability Engineering”, AP Professional, Chestnut Hill, MA,
1993.

Norman, R. J., “Object-Oriented Systems Analysis and Design”, Prentice
Hall, Upper Saddle River, NJ, 1996.

Nutt, P., “Formulation Tactics and the Success of Organizational Decision
Making,” Vol. 23, No. 3, May/June 1992. pp. 519-540.

Osborn, A. F., Applied Imagination, Scribner, New York, 1953.
Pentland, B., “Organizing Moves Software Support Hot Lines,” Adminis-

trative Science Quarterly, 37, 4, pp. 527-548, 1992.
Pentland, B., “Grammatical Models of Organizational Process”, Organi-

zational Science, Vol. 6, No. 5, September-October 1995, pp.541-556.
Schank, R. C. and Abelson, R. P., Scripts, Plans, Goals and Understand-

ing: An Inquiry into Human Knowledge Structures, Hillsdale, NJ:
Lawrence Erlbaum, 1977.

Schoemaker, P. H., “Scenario Planning: A tool for Strategic Thinking,”
Sloan Management Review, 1995 Winter.

Schweitz, R. et al., “Could participative design the answer for us?”, Jour-
nal for Quality and Participation, January/February, 1997, pp. 34-42.

Simon, H., “The New Science of Management Decisions, Rev. ed.,
Englewood Cliffs, NJ: Prentice-Hall, 1977.

Smith, G. F., “Defining Managerial Problems: A Framework for Prescrip-
tive Theorizing”, Management Science, 1989, 35(8), pp.963-981.

Young, L. F., “Knowledge-Based Systems for Idea Processing Support,”
Data Base, Vol. 22, No. 1/2, Winter/Spring 1991, pp. 46-50.

Weick, K.E., “The social Psychology of Organizing,” Addison-Wesley,
Reading, Mass., 1979.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/automatic-generation-requirement-

scenarios/31545

Related Content

Workflow Modeling Technologies
Maria N. Koukovini, Eugenia I. Papagiannakopoulou, Georgios V. Lioudakis, Nikolaos L. Dellas, Dimitra I.

Kaklamaniand Iakovos S. Venieris (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 5348-5356).

www.irma-international.org/chapter/workflow-modeling-technologies/112983

Implicit Cognitive Vulnerability
Caroline M. Crawford (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

5149-5157).

www.irma-international.org/chapter/implicit-cognitive-vulnerability/184219

An Empirical Analysis of Antecedents to the Assimilation of Sensor Information Systems in Data

Centers
Adel Alaraifi, Alemayehu Mollaand Hepu Deng (2013). International Journal of Information Technologies

and Systems Approach (pp. 57-77).

www.irma-international.org/article/empirical-analysis-antecedents-assimilation-sensor/75787

Social Computing
Nolan Hemmatazad (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

7796-7804).

www.irma-international.org/chapter/social-computing/184475

A Roughset Based Ensemble Framework for Network Intrusion Detection System
Sireesha Roddaand Uma Shankar Erothi (2018). International Journal of Rough Sets and Data Analysis

(pp. 71-88).

www.irma-international.org/article/a-roughset-based-ensemble-framework-for-network-intrusion-detection-

system/206878

http://www.igi-global.com/proceeding-paper/automatic-generation-requirement-scenarios/31545
http://www.igi-global.com/proceeding-paper/automatic-generation-requirement-scenarios/31545
http://www.irma-international.org/chapter/workflow-modeling-technologies/112983
http://www.irma-international.org/chapter/implicit-cognitive-vulnerability/184219
http://www.irma-international.org/article/empirical-analysis-antecedents-assimilation-sensor/75787
http://www.irma-international.org/chapter/social-computing/184475
http://www.irma-international.org/article/a-roughset-based-ensemble-framework-for-network-intrusion-detection-system/206878
http://www.irma-international.org/article/a-roughset-based-ensemble-framework-for-network-intrusion-detection-system/206878

