IDEA GROUP PUBLISHING

/— IGP =7 1701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4513

UML Dialect for Designing Object-Relational
Databases

Leszek A. Maciaszek
Macquarie University, Sydney, Australia, leszek@mpce.mq.edu.au

Kin-Shing Wong
Tower Technology Pty Ltd, Sydney, Australia, ksw@towertechnology.com.au

ABSTRACT

The market trends indicate that the next generation database technology will be dominated by object-relational systems. This shift to the new technology
calls for visual modeling techniques to facilitate the design of object-relational database systems. Even though Unified Modeling Language (UML) is not
currently equiped to manage this task, it can be extended for it.The paper defines design constructs needed for the development of an object-relational
database system. The constructs include those that assist in the migration process from a relational to an object-relational database. Both data and
procedural constructs are considered. Many UML extensions in the proposed UML dialect are derived by stereotyping existing UML elements. New
classes are created to model object-relational constructs, and they are assigned their own distinct icons. Any special constraints on relationships between
concepts in the extended UML are explained through practical examples. The mappings from design models to an object-relational implementation are

exemplified.
INTRODUCTION

The design is a low-level model of system’s architecture and its inter-
nal workings. As opposed to systems analysis, the design is constrained by
software/hardware platform on which the system is to be implemented.
This means that to claim support for design phase of software lifecycle, a
visual modeling language must understand the underlying implementation
model.

“The Unified Modeling Language (UML) is a general-purpose vi-
sual modeling language that is used to specity, visualize, construct, and
document the artifacts of a software system” (Rumbaugh et al., 1999). As
such, UML provides rather generic concepts that do not support well the
design of systems. This includes “pure” object-oriented systems such as
those that use C++, Java or Smalltalk as a programming language and an
object database system to manage persistent objects. Each of these pro-
gramming languages and databases has its own peculiarities that a generic
UML does not accommodate.

The generic UML is also not expressive enough for designing rela-
tional and object-relational databases. As far as relational database design
is concerned, UML is often not even supported by lower-engineering vi-
sual modeling tools and code generators. If UML is to be a player in the
design of object-relational databases it will need to be extended to sup-
port the forthcoming SQL3 standard (Melton, 1996; Melton, 1998) and to
capture the peculiarities of various object-relational database implemen-
tations (Oracle8, Informix Dynamic Server, DB2 UDB (Universal Data
Base)).

UML has static, dynamic and architectural parts (Booch et al., 1999;
Rumbaugh et al., 1999). The architectural constructs are used to arrange
models into modules that partition a large system into workable compo-
nents. These constructs are used for architectural design, which deter-
mines solution strategies for the client and server aspects of a database
system. UML contains generic constructs for representing such architec-
tural decisions, in particular for organizing modules into packages and
run-time elements into components.

The description of internal workings of each architectural module is
called detailed design. The detailed design is responsible for specification
of algorithms and data structures for each module. These algorithms and
data structures must be tailored to reinforcing and obstructive constraints
of the underlying implementation platform.

UML captures information about the static (data) and dynamic (pro-
cedural) aspects of a system. A static view of the system is mostly captured
in class diagrams. Dynamic aspects are expressed in use cases, state dia-
grams, activity diagrams and interaction diagrams. UML constructs and
views support high-level modeling of object-oriented systems.

When it comes to capturing low-level design issues, UML offers spe-
cial extensibility mech s - stereotypes, constraints and tagged val-
ues. A visual modeling tool can additionally allow for easy introduction of
new graphical icons to represent stereotyped, constrained and tagged con-

structs. If such extensions target a particular implementation platform, such
as an object-relational database, a new UML dialect is created. The ulti-
mate aim of a UML dialect for designing object-relational databases (there-
after called the UML/ORDBS dialect) is to be sufficiently expressive to
support lower-engineering activities, including data and code generation,
and reverse-engineering from existing databases.

BACKGROUND

Stonebraker and Brown (1998) predict that by the year 2005 the ob-
ject-relational database market will be 50% larger than the relational data-
base market. The major market forces in favor of object-relational data-
bases are software requirements of new multimedia applications and the
growing need of business systems to support querying of complex data for
decision-making functions.

The object-relational database (ORDB) model extends the relational
database (RDB) model by providing a richer object-oriented type system
and by adding constructs to SQL for complex queries. A forthcoming SQL
standard (SQL3) provides the direction for object-relational database imple-
mentations. Apart from vendors specifically targeting this market (eg.
UniSQL and Omniscience), major relational database vendors - like Oracle,
IBM and Informix - already ship their ORDB products to the market.

A practical implication for any ORDB vendor is to be compatible with
relational technology, even though this may conflict with some SQL3 guide-
lines. As a result, ORDB products are significantly more complex than
SQL-3 standard may stipulate. For example, Oracle8 (Koch and Loney,
1997) supports three different (yet compatible) database solution strate-
gies:

* atypical relational solution based on Oracle’s built-in datatypes,

* a “pure” object-relational solution based on object tables,

* an “evolutionary” object-relational solution based on abstract
datatypes and object views defined on an existing relational schema.

The need to accommodate relational and object-relational constructs
in a single model leads not only to some peculiar solutions, but it forces (at
least initially) an abandonment of some important object-oriented features
(eg. inheritance). There are significant differences between ORDB prod-
ucts (such as Oracle8, Informix Dynamic Server and UDB), and between
ORDB products and the forthcoming SQL3 standard (Muller, 1999).

Needless to say that design of object-relational databases is a chal-
lenging task, even for an experienced database designer familiar with ob-
ject-oriented modeling. The initial difficulty lies in structuring of complex
objects. A multi-level structure of abstract datatypes needs to be estab-
lished before the stored objects (object tables) can be defined. But the
ORDB vendors are incompatible on even such fundamental issues.

Even though SQL3 includes generalization of types into an inherit-
ance structure, Oracle8 and UDB do not support inheritance as yet. Most
ORDB vendors support multimedia data types (cartridges in Oracle, data-
blades in Informix, extenders in DB2 UDB), but they have their own unique

This paper appears in Challenges of Information Technology Management in the 21st Century, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2000, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

474 - |IT Management in the 21st Century

ways of integrating these extensions into the SQL typing systems. The
approaches to the relaxation of the first normal form also vary in ORDB
products. SQL3 allows arrays as column values but it does not allow nested
tables. Oracle8 has nested table and varying arrays. Collection data types
supported by Informix include sets, multisets, and lists. The solutions to
linking tables through pointers or references are not “standardized” either.

The incompatibilities, as defined above, make it difficult to propose a
single set of UML extensions to cater for ORDB design. This paper takes
an approach of relying on a specific technology rather than on vague and
contradictory principles. An advantage is that we can offera UML/ORDBS
dialect that is coherent and has sufficient technical depth. We believe that
this is a better strategy and the same UML extensibility mechanism can be
readily used to provide variations to our UML/ORDBS dialect so that other
products can be accommodated. The UML/ORDBS dialect presented in
this paper targets Oracle8.

As mentioned, UML offers few extensibility mechanisms that give
ability to tailor the modeling language to a database software platform, yet
still share the concepts that are generic and common to other components
of an application (such as the client application programming interface).
The major extensibility mechanism in UML is stereotype. “A stereotype
represents a variation of an existing model element with the same form
(such as attributes and relationships) but with a different intent. ... A ste-
reotyped element may have additional constraints, beyond those of the
base element, as well as a distinct visual image.” (Rumbaugh ez al., 1999).

Figure 1 is an example of a simple class diagram where classes are
stereotyped as relational tables (the stereotyped labels are placed within
matched guillemets, which are the quotation marks used in French and
some other languages). The constraint placed on the relationship is also
stereotyped as FK (foreign key).

Figure 1. Stereotypes as UML extensibility mechanism

<<RelationalTable>>

PURCHASE_ORDER
iPURC_PKEY = PONO <<RelationalTable>>
NO : NUMBER LINE_ITEMS

DERDATE : DATE <<FK>>
LINE_PKEY = PONO,LINEITEMNO|
HIPTODATE : DATE _LINE_FKEY1_| 88 INEITENNO : NUMBER
HIPTOSTREET : VARCHAR2) - e
P TOOTY - VoA < PONO = PONO | BQUANTITY : NUMBER
: DISCOUNT : NUMBER

HIPTOSTATE : CHAR
HIPTOZIP : VARCHAR2

o_delete_tr()
o_insert_tr{)
0_update_tr()

An intent of stereotypes and other lesser extensibility mechanisms of
UML is that a generic modeling element is still an ordinary element but
with some differences in semantics. This is a correct approach if a new
UML dialect is to retain its genericity and commonality to all domains,
while at same time enabling the definition of specific constructs. Vendors
of visual modeling (CASE) already offer some add-ins that utilize stereo-
types to target specialized domains. In particular, Rational Corporation
provides an add-in for Oracle8 in its Rational Rose visual modeling tool
(Rational, 1998). The UML/ORDBS dialect, that we propose in this paper,
uses Rational Rose / Oracle8 add-in as a starting point.

i_insert_tr()
i_update_1r()

UML EXTENSIONS FOR DESIGNING OBJECT-

RELATIONAL DATABASES

A built-in knowledge of the ORDBS constructs is a prerequisite for
our UML/ORDBS dialect. Static, dynamic and architectural constructs have
to be identified. The most important among these constructs is the abstract
data type, which is known as the user-defined type (UDT) in SQL3, the
distinct type in DB2 UDB and Informix Dynamic Server, and the object
type in Oracle8.

Object type is the basis for defining object tables. It gives meaning to
data, it defines operations on these data, it tells you how to compare and
convert its own objects, it can be used for defining nested tables and for
referencing objects in other tables. However, inheritance and encapsula-
tion are not supported in Oracle8 and, therefore, not considered in our
UML/ORDBS dialect (this limitation of the dialect is not consequential
because the generic UML defines inheritance and encapsulation constructs).

The constructs supported by our UML/ORDBS dialect are classified
in six groups and discussed in the remainder of this section. The examples
that illustrate the usage of these constructs are drawn from the Oracle8
Purchase Order tutorial (Oracle, 1998). When needed, the tutorial is ap-
propriately extended. The groups of constructs are:

» conventional relational constructs (tables, views, triggers, etc.)
» packages, stored procedures and functions

* object types and object tables

» collections (varying arrays and nested tables)

» object views and INSTEAD OF triggers

» clients and transactions

Conventional relational constructs

The UML/ORDBS support for conventional relational constructs is
based on the stereotypes available in the Rational Rose / Oracle8 tool. The
major difference is the introduction in UML/ORDBS of new graphical
icons. Figure 2 illustrates two relational tables: PURCHASE ORDER and
LINE ITEMS. The referential integrity is based on the purchase order
number (PONO) columns, and it is enforced by a number of #riggers (such
as po_delete_tr). Other aspects of the example should be self-explanatory.

Figure 2. Conventional relational constructs in UML/ORDBS

<<FK>>
LINE_FKEY1

| PONO = PONO :l:l:

HHE

PURCHASE_ORDER

LINE_ITEMS

BLINE_PKEY = PONO,LINEITEMNO
LINEITEMNO : NUMBER

PURC_PKEY = PONO
ONO : NUMBER
RDERDATE : DATE UANTITY : NUMBER
HIPTODATE : DATE ISCOUNT : NUMBER
HIPTOSTREET : VARCHAR2
. HIPTOCITY : VARCHAR2 'ﬁ,insen_tr()
HIPTOSTATE : CHAR : i_update_tr()

HIPTOZIP : VARCHAR2

o_delete_tr()
_insert_tr()
o_update_tr()

Packages, stored procedure and functions

Relational and object-relational databases allow storing programs in
the database. These programs are called stored procedures or functions.
Stored procedures cannot return values to the calling program, but func-
tions can. Packages are larger program units that can contain procedures,
functions, variables, and SQL statements (Koch and Loney, 1997). The
dot notation is used to execute a procedure or a function within a package
(package name.procedure name).

Below is an example of package specification with one function and
one procedure. The function find cust allows to find a customer object
given customer number (custno_in) as input parameter. The procedure
update cust enables to update customer information in the database. It
expects customer object (cust_in) as input parameter.

CREATE OR REPLACE PACKAGE manage cust AS
FUNCTION find_cust(custno_in IN NUMBER) RETURN customer_info_t;
PROCEDURE update_cust(cust_in IN customer_info_t);

END manage_cust;

/

Figure 3 shows a design of package manage cust. There are three
graphical icons to represent a package, procedure and function. The pack-
age contains procedure update cust and function find_cust. The contain-
ment is expressed with UML aggregation by value relationship.

Figure 3. Packages, stored procedures and functions in UML/ORDBS
//

" update_cust

<<IN>> cust_in : customer_info_t

manage_cust

find_cust: customer_info_t

<<IN>> custno_in : NUMBER

Object types and object tables

As explained earlier, the object type in Oracle8 corresponds (loosely
speaking) to the concept of class and abstract data type. It defines a data
structure (attributes) and operations (methods) that act on these attributes.
Object type is just a template for object creation; it itself does not hold any
data. Objects can be stored persistently in object tables (each row is an
object). Transient objects are stored in programming language variables
(Feuerstein, 1997).

The code below defines an object type (purchase order t) and an ob-
ject table (purchase_tab). The object type contains three scalar attributes
(pono, orderdate and shipdate). The attribute custref is a reference to an
object of type customer_info_t. The types of line_item_list and shiptoaddr
are other user-defined object types.

The purchase order t houses three functions and one procedure. The
function ret_value is a MAP function that specifies (in the function body
that is not shown here) how to translate or “map” a purchase_order t ob-
ject into a scalar datatype that the ORDBS knows how to compare. The
function total value returns the total amount of a purchase order. The pro-
cedure add_item adds a new order item to the purchase order, and the
function get item finds an order item. The PRAGMA
RESTRICT REFERENCES clauses control the ability of methods (func-
tions or procedures) to modify the database.

The next statement defines the object table purchase tab. The state-
ment places the scope on the custref reference column. The scope says that
the references can refer only to the customer_tab objects. The object table
also has a nested column line_item_list. The line_item_list objects are stored
in a separate table po_line tab.

CREATE OR REPLACE TYPE purchase_order_t AS OBJECT (

pono NUMBER,

custref REF customer _info _t,
orderdate DATE,

shipdate DATE,

line_item_list line_item_list t,
shiptoaddr address_t,

MAP MEMBER FUNCTION ret_value RETURN NUMBER, PRAGMA
RESTRICT_REFERENCES (ret_value, WNDS, WNPS, RNPS, RNDS),

MEMBER FUNCTION total_value RETURN NUMBER,
PRAGMA RESTRICT_REFERENCES (total_value, WNDS, WNPS),

MEMBER PROCEDURE add_item(stock_ref REF stock_info_t, NUMBER,
d NUMBER), PRAGMA RESTRICT_REFERENCES (add_item, WNDS,
WNPS, RNPS, RNDS),

MEMBER FUNCTION get_item(i BINARY INTEGER) RETURN
line item t, PRAGMA RESTRICT REFERENCES (get item, WNDS, WNPS,
RNPS, RNDS),

)

CREATE TABLE purchase_tab OF purchase_order _t (
PRIMARY KEY (pono),
SCOPE FOR (custref) IS customer_tab
)
NESTED TABLE line_item_list STORE AS po_line tab ;

Our UML/ORDBS dialect offers two new icons to represent object
types (such as purchase_order_t) and object tables (such as purchase_tab).
We use generalization relationship to say that purchase tab is a kind of

Figure 4. Object types and object tables in UML/ORDBS

- O

PURCHASE_TAB

PURCHASE_ORDER_T

PONO : NUMBER
ORDERDATE : DATE
SHIPDATE : DATE

RET_VALUE()
OTAL_VALUE()
d_ttem()
Get_ltem()

2000 IRMA International Conference « 475

purchase order t. The methods are physically contained in the type, but
we could alternatively use the aggregation by value relationships (as in
Figure 3) to express the same semantics.

Collections (varying arrays and nested tables)
Collections are used to store (and retrieve) nonatomic data in a single
column of an object table. A varying array VARRAY is an ordered set of
data elements and it has a predefined maximum size. 4 nested table is an
unordered set of data elements, stored in a special auxiliary table called a
store table.
The VARRAY phone_list_t defined below is a varying array of maxi-
mum ten elements of scalar datatype varchar2. The nested table
line_item_list_t contains elements of the object type line item t.

CREATE TYPE phone_list_t AS VARRAY(10) OF VARCHAR2(20) ;
/

CREATE TYPE line_item_t AS OBJECT (
lineitemno NUMBER,
stockref REF stock_info _t,
quantity NUMBER,
discount NUMBER
)
/

CREATE TYPE line_item_list t AS TABLE OF line_item _t;
/

Figure 5. Collections (varying arrays and nested tables) in UML/
ORDBS

0.10
- _9-19 varcHAR2
PHONE_LIST_T
0.4
<>

LINE_ITEM_LIST_T LINE_ITEM_T

LINEITEMNO : NUMBER
JQUANTITY : NUMBER
DISCOUNT : NUMBER

Graphical icons for a VARRAY and a nested table in the UML/ORDBS
dialect are shown in Figure 5. Aggregation by reference is used to link the
scalar datatype (note the icon) - the same scalar datatype can be a compo-
nent of many different collections. The line_item t objects, on the other
hand, are aggregated by value with the line item list t nested table be-
cause each component object can belong only to one collection.

Object views and INSTEAD OF triggers

An object view is a virtual object table. Object views facilitate transi-
tion of applications from a relational database to an object-relational data-
base. An object view is an updatable (INSTEAD OF triggers) named query
on relational and/or object tables.

The code below presents a simple example of an object view
(stock_view) that contains relational table stock info. An INSTEAD OF
trigger instructs the ORDBS that any inserts on object view need to be
executed as programmed in insert statement in the trigger body.

CREATE OR REPLACE VIEW
stock_view OF stock_info_t WITH OBJECT OID(stockno) AS
SELECT *
FROM stock_info ;

CREATE OR REPLACE TRIGGER
stockview_insert_tr INSTEAD OF INSERT ON stock view
BEGIN

INSERT INTO stock_info VALUES (

476 - IT Management in the 21st Century

Figure 6. Object views and INSTEAD OF triggers in UML/ORDBS

\i"7 7 -
L L STOCK_INFO

STOCK_INFO_T

STOCKNO: NUMBER
COST : NUMBER
TAX_CODE : NUMBER

STOCKNO : NUMBER
COST :NUMBER
TAX_CODE : NUMBER
STOC_PKEY = STOCKNO

STOCK_VIEW

STOCKNO : NUMBER = STOCK_INFO.STOCKNO
COST : NUMBER = STOCK_INFO.COST
TAX_CODE : NUMBER = STOCK_INFO.TAX_CODE

stockview_insert_tr

:NEW.stockno,
:NEW.cost,
:NEW.tax_code);
END ;
/

Figure 6 shows two new icons: for object view (stock view) and for
trigger (stockview_insert_tr). Attribute part of object view defines how a
query retrieves data from relational table (an arrowed line indicates re-
trieves relationship). A generalization relationship is used to specify that
stock view is a kind of stock info t. An association relationship links
INSTEAD OF trigger with its object view.

Clients and transactions

An object-relational database application consists of inter-communi-
cating objects that perform business transactions (normally initiated from
a client application). Therefore, we need to have at least two more UML
constructs to model the flow-of-control in client/server programs: client
and fransaction.

A client construct is an abstract concept. In reality, client objects rep-
resent various view and control objects as available in a particular GUIL
framework (such as primary window, dialog box, menu item, etc.). As we
do not attempt in this paper to define a UML dialect for GUI part of a
system, we will combine all these objects under a single “umbrella” object
called client.

A transaction construct represents the notion of the database transac-
tion as a unit of the database consistency. A transaction either completes
satisfactorily all its operations and it then commits the changes to the data-
base, or the changes must be rolled back.

Figure 7 shows graphical icons for a client (Create Purchase Order
window) and for a transaction (Store order) in our UML/ORDBS dialect.
The usage of these icons in UML/ORDBS is illustrated in the case study in
the next section (Figure 10).

CASE STUDY - PUTTING IT ALL TOGETHER

In the previous section, we defined the primitive constructs in our
UML/ORDBS dialect. In this section, we put it all together and show how
these constructs can be used on a small case study. The case study extends
the examples in the tutorial provided in Oracle8 documentation (Oracle8,
1998).

The application domain refers to a purchase order (PO) application
handling customers, stock of products for sale and purchase orders. Cus-

Figure 7. Clients and transactions in UML/ORDBS

Client

Create Purchase Order window Store order

tomers place orders on stock items. A stock item can appear on many pur-
chase orders. A purchase order can have any number of line items, but
each line item refers to a single stock item.

Designing ORDB schema with UML dialect

Figure 8 shows a static model for the PO application. It shows object
types, object tables, a nested table and a VARRAY. These graphical ob-
jects are linked by aggregation, generalization and reference relationships.

Aggregation relationships are used to capture the containment of ob-
jecttypes. For example, purchase order t contains an attribute which type
is defined as address_t. Reference relationships (supported by Oracle8 REF
operator) are shown as arrowed lines pointing to the referenced row ob-
jects. Object tables are derived as subclasses of object types and are there-
fore linked by generalization relationships. For example, each row of
customer tab is a customer_info_t object.

Designing ORDB programs with UML dialect

A typical functionality of a program interacting with a database is best
captured by the acronym CRUD - create, read, update, delete persistent
objects. A question arises how to manipulate persistent objects in object-
relational database. Feuerstein (1997) describes four approaches (in the
context of Oracle8 database):

1. Handle persistent objects from client application by sending SQL state-
ments (SELECT, INSERT, UPDATE, and DELETE) to server data-
base for execution. This approach does not take advantage of object
types (and no methods have to be defined).

2. Still handle persistent objects from client application but invoke con-
structor methods to insert data and various update methods to update
data. Use SELECT and DELETE as in point 1.

3. Implement all data manipulations via object methods. This method lim-
its reuse because (in Oracle8 context) it effectively ties each object
type to a single object table.

4. Design object methods to avoid direct references to persistent object
tables, instead acting only on its own object and on data exchanged via
method arguments. Packages can be constructed to introduce a level of
indirection between method invocation and persistent storage, thus al-
lowing for type reuse.

The last approach seems to be the most attractive from object-ori-
ented perspective. Below is a specification of a package (manage po) that
uses this approach to handle the CRUD operations on purchase order ob-
jects.

CREATE OR REPLACE PACKAGE manage_po AS
/* This package depends on the following

* SEQUENCE po_seq

* OBJECT TYPE customer_info_t
* purchase_order t
* OBJECT TABLE purchase_tab

*/

Figure 8. UML/ORDBS schema design

iz

PHONE_LIST_T 7

o ADDRESS_T o
SPHONELIST o STREET: vARGHARZ P yiiiiel
CITY - VARCHARZ TEMNO
2 -ADDRESS . LINEITEMNO : NUMBER
o STATE: CHAR " QUANTITY :NUMBER

ZIF :¥AACHAR2 4

DHSCOUNT : NUMBER
I R
H |

E +STOCKREF
h'a

CUSTOMER_INFO_TY

CUSTNO :NUMBER ‘

CUSTNAME : VARCHAR2 +CUSTREF LINE_TEM_LIST_T
~ +SHIPTCADDR
GUST_GADER() : INTEGER L LINETEMLIST
£ -

STOCK_INFG_T

STOCKNO : NUMBER
COST : NUMBER

. TAX_CODE : NUMBER

~" PURCHASE_ORDER_T _—

- FONO:NUMBER
ORDERDATE : DATE

GUSTOMER_Té8 "
- SHIPDATE : DATE

BT

RET_VALUE() : NUMBER
TOTAL _VALUE(: NUVBER
ADD_ITEMTEM : LINE_ITEM_T)
GET_ITEMINDEX : INTEGER) : LINE_ITEM_T

PURGHASE_TAB

STOCK_TAB

Figure 9. UML/ORDBS program design

- — — = W
L []
T=
R S— — — ——
r
T =
-

/* return the next new purchase order number */
PROCEDURE next_pono(pono_out OUT NUMBER);

/* create a new purchase order
* a new purchase order number will be assigned automatically
*/

PROCEDURE create_po

(cust_ref in

po_ref out

)

IN REF customer_info t,
OUT REF purchase_order t

/*

* find purchase orders when provided with pono_in

* return an object or a reference to the object

*/

FUNCTION find_po(pono_in IN NUMBER) RETURN purchase order t;
FUNCTION find_po_ref(pono_in IN NUMBER) RETURN REF
purchase_order t;

/* update the given purchase order */
PROCEDURE update po(po_in IN purchase_order_t);

/*

* overloaded delete purchase order functions

*/

PROCEDURE delete_po(pono_in IN NUMBER);
PROCEDURE delete_po(po_in IN purchase_order_t);
PROCEDURE delete_po(po_ref in IN REF purchase_order_t);

END manage_po;
/

The above package can be designed using our UML/ORDBS dialect
as shown in Figure 9. Aggregation by value relationships are used to iden-
tify all component procedures and functions within the package. The only

Figure 10. UML/ORDBS client/server flow-of-control design

M o> O

CUSTOMER _TAB

1 Find customar manage_aust find_oust

4: Customar
ol Mdd item
>

5: Create new PO
JpN

7: Slara Transient PO
: Transiant PQ: PUBCHASE
OHDER T

Create Purchase Grder wingow

> .

marage_po create_pe

.
i:insetdata 7 7 S
S t/
s 12: End yansaction
g

e
£ 10: santwansacton

} 13: Committransacton O
—>

PURACHASE_TAB

Store arder

2000 IRMA International Conference « 477

exception is the procedure next_pono, which is “indirectly” contained in
the package because it is invoked by the procedure create_po whenever a
new purchase order number needs to be generated. The arrowed line signi-
fies invocation relationship.

Designing client/server flow-of-control with UML dialect

In the previous two sections, we showed how the static structure and
the architectural design of each program could be visualized in the UML/
ORDBS dialect. However, a flow-of-control between client and server
objects to accomplish a business transaction has not been shown yet.

Figure 10 shows an object collaboration diagram that represents such
a flow-of-control for the creation of a new purchase order. A client object
named Create Purchase Order window activates the process. The first task
is to retrieve a customer for whom the purchase order is to be created. This
is initiated by a message sent to package manage cust, and more specifi-
cally to function find_cust that returns a customer object from object table
customer _tab.

Once the customer is displayed on client window, a transient object of
type purchase_order t is instantiated and line items are added to it. After
purchase order is created (still in the program’s memory and visible in a
client window), a client object requests that the object be persistently stored
in object-relational database. The client passes Transient PO as an argu-
ment of procedure manage po.create_po. This procedure requests that
another procedure (next pono) generates next purchase order number un-
der which PO can be stored. The database transaction is only started now
and, if successful, it commits changes to object table purchase_tab.

CONCLUSIONS

A new UML dialect for designing object-relational databases was de-
scribed in this paper. The dialect supports directly object-relational con-
structs of Oracle8, but it could be easily customized for other ORDBS-s.
The UML extensions, including the introduction of graphical images, were
implemented on top of Rational Rose. The UML/ORDBS dialect has been
integrated into Rational Rose add-in for Oracle8 and it can provide a lim-
ited capability for Oracle8 code generation.

As yet, the capabilities of more extensive forward and reverse engi-
neering with Oracle8 have not been built into our UML/ORDBS dialect.
This is because of inherent limitations in Rational Rose (and most other
visual modeling tools). For example, Rational Rose does not fully support
stereotyping outside of class models. Stereotyping UML elements in mod-
els that do not visualize classes is difficult and occasionally impossible
(eg. in sequence diagrams, collaboration diagrams or state diagrams, where
classes are not the modeling elements).

More importantly, to create a sufficiently expressive UML dialect, a
tool has to allow for appropriate extensions of its own internal metamodel
(and a scripting language to program such extensions needs to be pro-
vided by a tool vendor). Rational Rose does not give this capability. As a
result, the stereotyped elements are relatively “mindless” and tasks such
as code generation are not completely obtainable. Unless vendors of vi-
sual modeling tools “open up” the metamodels to system developers, so
that they can fully customize the tools to their needs, the industry adoption
of UML dialects extended for system design (as opposed to system analy-
sis) will be sluggish.

REFERENCES

Booch, G. Rumbaugh, J. and Jacobson, 1. (1999): The Unified Modeling Language
User Guide, Addison-Wesley, 482p.

Feuerstein, S with Pribyl, B. (1997): Oracle PL/SOL Programming, 2" ed., O’Reilly
& Associates, Inc., 987p.

Koch, G. and Loney, K. (1997): ORACLES. The Complete Reference, Osborne
McGraw-Hill, 1300p.

Melton, J. (1996): Assessing SQL3’s New Objects Directions. A Shift in the Land-
scape, Database Prog. & Design, Aug., pp.51-54.

Melton, J. (1998): SQL3 Moves Forward, Database Prog. & Design, 6., pp.63-66.

Muller, R.J. (1999): Database Design for Smarties, Morgan Kaufmann, 442p.

Oracle (1998): Oracle8 Server Application Developer'’s Guide, on-line documenta-
tion.

Rational (1998): Rational Rose 98. Using Rational Rose / Oracle8, Rational Corp.,
100p.

Rumbaugh,J. Jacobson, I. and Booch, G. (1999): The Unified Modeling Language
Reference Manual, Addison-Wesley, 550p.

Stonebraker, M. Brown, P. with Moore, D. (1998): Object-Relational DBMSs Track-
ing the Next Great Wave, 2™ ed., Morgan Kaufmann, 266p.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/uml-dialect-designing-object-
relational/31559

Related Content

The Contribution of ERP Systems to the Maturity of Internal Audits

Ana Patricia Silvaand Rui Pedro Marques (2022). International Journal of Information Technologies and
Systems Approach (pp. 1-25).
www.irma-international.org/article/the-contribution-of-erp-systems-to-the-maturity-of-internal-audits/311501

I-Rough Topological Spaces

Boby P. Mathewand Sunil Jacob John (2016). International Journal of Rough Sets and Data Analysis (pp.
98-113).

www.irma-international.org/article/i-rough-topological-spaces/144708

Hybrid Artificial Intelligence Heuristics and Clustering Algorithm for Combinatorial Asymmetric
Traveling Salesman Problem

K Ganesh, R. Dhanlakshmi, A. Tangaveluand P Parthiban (2009). Utilizing Information Technology
Systems Across Disciplines: Advancements in the Application of Computer Science (pp. 1-36).
www.irma-international.org/chapter/hybrid-artificial-intelligence-heuristics-clustering/30714

Essential Technologies and Methodologies for Mobile/Handheld App Development
Wen-Chen Hu, Naima Kaabouchand Hung-Jen Yang (2015). Encyclopedia of Information Science and
Technology, Third Edition (pp. 5667-5678).
www.irma-international.org/chapter/essential-technologies-and-methodologies-for-mobilehandheld-app-
development/113022

Rigor, Relevance and Research Paradigms: A Practitioner's Perspective
John C. Beachboard (2004). The Handbook of Information Systems Research (pp. 117-132).

www.irma-international.org/chapter/rigor-relevance-research-paradigms/30346

http://www.igi-global.com/proceeding-paper/uml-dialect-designing-object-relational/31559
http://www.igi-global.com/proceeding-paper/uml-dialect-designing-object-relational/31559
http://www.irma-international.org/article/the-contribution-of-erp-systems-to-the-maturity-of-internal-audits/311501
http://www.irma-international.org/article/i-rough-topological-spaces/144708
http://www.irma-international.org/chapter/hybrid-artificial-intelligence-heuristics-clustering/30714
http://www.irma-international.org/chapter/essential-technologies-and-methodologies-for-mobilehandheld-app-development/113022
http://www.irma-international.org/chapter/essential-technologies-and-methodologies-for-mobilehandheld-app-development/113022
http://www.irma-international.org/chapter/rigor-relevance-research-paradigms/30346

