
2001 IRMA International Conference • 155

INTRODUCTION
This paper addresses the challenge of how to structure a learn-

ing environment to teach object-oriented computer programming
to students who may need an introductory course in that discipline
but who may lack the experiences to use symbol manipulations
with confidence. In contrast to computer science students, infor-
mation systems students sometimes exhibit these latter attributes,
but they would nonetheless benefit professionally from acquiring
rudimentary programming language knowledge and skill. To ac-
complish that objective, the Personalized System of Instruction
(PSI), originally developed by Keller (1968), is described here to
foster equivalent competence among students in an initial Java‰
coding assignment in an introductory programming course. The
intent of integrating a Java tutoring system into the PSI framework
as the first laboratory exercise is to ensure that all students in the
class have at least this background experience in common prior to
the introduction of advanced features of interface implementation
that are taught during the remainder of the semester. Self-report
and performance data are presented to support the use of this peda-
gogical approach in the classroom.

The PSI methodology is based on the following five factors:
(1) unit perfection, in which progress from one step in learning to
another step requires perfect performance in the prior step; (2)
self-paced progression, in which the student may move through a
training experience at a self-determined rate; (3) focus on the
written word, in contrast to traditional lectures, to transmit infor-
mation to the student; (4) repeated testing of concepts, and (5)
collaborations and discussions with peers and experts. These five
factors together constitute the PSI proposed by Keller (1968) and
implemented by Ferster and Perrott (1968). Many studies support
the effectiveness of the PSI (e.g., Kritch & Bostow, 1998), which
contains features that are intended to meet the needs of the indi-
vidual learner in ways that have long been known to overcome
individual differences and to promote high achievement levels in
all students (Bloom, 1984).

This paper reports the outcome of the use of the PSI in a
graduate-level course that contains instruction in implementing
graphical user interfaces with the Java Abstract Windowing Toolkit
(AWT). The data reported here will show the use of the PSI to
teach a class of students to write a Java Applet. The study extends
our previous work, which validated a web-based tutoring system
for training in fundamental aspects of Java by documenting im-
provements in programming confidence and competence immedi-
ately after students used the tutoring system (Emurian, Hu, Wang,
& Durham, 2000). The present study broadens the number of as-
sessment occasions to include a third assessment that occurred after
the fifth PSI factor listed above had been completed by all stu-
dents in a classroom discussion and collaboration setting. Finally,
to assess the durability of learning, the study includes a fourth and

final assessment that was administered during the last class of the
semester, which occurred over three months after the third assess-
ment occasion.

Our pedagogical approach emphasizes a programmed in-
struction methodology for implementing the first four factors in
the PSI by means of the web-based tutoring system for Java train-
ing. Programmed instruction technology for teaching offers spe-
cific guidelines to follow in the construction of procedures that
manage the moment-by-moment progress of a student during study
events that are structured within the framework of a behavioral
theory of learning (Skinner, 1958). The theoretical assumption is
that the steps involved in learning a complex task, such as con-
structing a computer program, can be specified with sufficient pre-
cision that reinforcement contingencies can be applied to the com-
ponent units that lead to task mastery. These ideas and concepts
are grounded within the experimental analysis of behavior litera-
ture (e.g., Holland, 1960). This principle-based learning technol-
ogy predates computer-based instructional systems, which now
encompass a broad and multidisciplinary field of investigations
and applications (Brock, 1997).

In the present tutoring system, the operational definitions of
the information units to be learned by a student are based upon re-
search in verbal learning that identifies at least three types of verbal
information paradigms: (1) item information, which records the
occurrence of events and is commonly tested by recognition tests;
(2) associative information, which records relationships between
separate events and is commonly tested by paired-associates tests;
and (3) serial order information, which records the temporal se-
quence of a string of events and is commonly tested by serial recall
tests (Li & Lewandowsky, 1995). The programmed progression
among unit sizes studied here is based upon a functional account of
verbal behavior, which suggests a systematic transition in learning
from textual items to streams as a function of practice (Greer &
McDonough, 1999). The adoption of the feature that learners be
required to construct accurate responses by recalling units of in-
creasing complexity is based upon earlier work by the authors in
which learning and retention of UNIX‘ command sequences were
superior under conditions of recall in comparison to recognition of
textual information items (Durham & Emurian, 1998).

TUTORING SYSTEM DESIGN
The technical and operational details of the tutoring system

have been presented elsewhere (Emurian, et al., 2000). The sys-
tem consists of a series of Java Applets embedded within the
WebCT‘ course management software that allows users to create
guest accounts to access the system (http://webct.umbc.edu/pub-
lic/JavaTutor/index.html). The design of the tutoring system is a
synthesis of principles of programmed instruction (Skinner, 1958),
verbal learning and memory (Anderson, 1995), the elaboration

This paper appears in the book, Managing Information Technology in a Global Economy, the proceedings of the Inforrmation Resour
es Management Association International Conference. Edited by Mehdi Khosrow-Pour. Copyright 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

IDEA GROUP PUBLISHING
IGP

#ITP4365

A PERSONALIZED SYSTEM OF
INSTRUCTION FOR TEACHING JAVA

Henry H. Emurian
Department of Information Systems, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA

Telephone: 410-455-3655; Fax: 410-455-1073; E-mail: emurian@umbc.edu

Ashley G. Durham1

Health Care Financing Administration, 7500 Security Boulevard, mailstop N2-13-16, Baltimore, Maryland 21244 USA
Telephone: 410-786-5775; Fax: 410-786-0271; E-mail: adurham@hcfa.gov

156 • Managing Information Technology in a Global Economy

theory of instruction (Reigeluth & Darwazeh, 1982), practice and
retention (Durham & Emurian, 1998), and instructional design
(Tennyson & Schott, 1997).

The objective of the programmed instruction tutoring
system is to teach a learner to construct a stream of 36 elements
that together constitute a Java computer program that displays a
text string in a Netscape” browser window. The approach taken is
first to specify the terminal performance, which is to write the
program correctly, and then to craft a series of programmed in-
struction steps that progress to that goal. The outcome is tested
mastery of the meaning of each of the 36 elements and the interre-
lationships among those elements in the production of the termi-
nal performance. The 36 elements are displayed in Figures 3 and
4, which are discussed below.

Overview
The learner progresses through the system in five stages.

The full instruction set presented to the learner is available for
observation within the online tutor.

Figure 1 shows the interfaces that the learner encounters
during the first two stages of training. The left interface requires
matching a displayed item. The right interface requires finding a
displayed item in the list. These interfaces promote familiarity with
the formal features of the symbols and with experience in detect-
ing similarities and differences among the symbols.

Figure 1: The interfaces presented during the first two stages.

Figure 2 shows the two interface types that are presented
during the third stage of the tutor. The top interface teaches the
individual items of code, which are displayed cumulatively in the
white space as the learner enters the items correctly. This interface
teaches up to three items of code, entered into keyin fields at the
bottom, and there are 14 of these interfaces in the tutor. This inter-
face also requires passing a multiple-choice objective test on each
item. Each successive item must be typed correctly in the keyin
field from memory before the learner may progress to a subse-
quent item. Next, the bottom serial stream interface is presented,
requiring entering the items that were just learned. If the input is
incorrect, the learner recycles again through the item interface,
and that cycle repeats until the serial stream is entered correctly.
Then the next item interface is presented.

Figure 2: The two interface types that are presented during the
third stage.

After the completion of the item and serial stream inter-
faces, a row by row interface is presented for the fourth stage.
Figure 3 shows two of the three row by row interfaces that are
presented. The top view shows the first pass interface, and the bot-
tom view shows the third pass interface. The second pass interface
has small row labels on a white background. Each interface re-
quires entering the lines of code correctly, row by row. The input
on a row is based on the format of the program that was displayed
in the white space in the item interface. The input on a row must
be accurate before the next keyin field is enabled. If the user can
not enter the row correctly, the item interface for the code in that
row is presented again, and that cycle repeats until the code on a
row is entered correctly.

2001 IRMA International Conference • 157

Figure 3: Two of the three row by row interfaces that are
presented during the fourth stage.

During the first pass, the user may select an optional “Hint”
window, which displays a description of the objective of the code
in that row. Additionally, a multiple-choice test must be passed on
the objective of each row. The second pass interface has the “Hint”
window available, but the third pass interface does not have this
option. Accordingly, the learner must complete three passes of
entering the code in a row by row format. A justification of this
number of passes is presented elsewhere (Durham & Emurian,
1998).

After the learner completes the row by row interfaces, a text
editor emulation interface is presented for the fifth stage. Figure 4
shows this interface with correct code entered. This interface re-
laxes the format that was enforced in the preceding interfaces, and
it evaluates the input as a stream. If the learner is not able to enter
the code correctly, the “Review” button initiates a recycling through
the third pass of the row by row interface. Accordingly, the learner
may recycle back to the row and item interfaces as required to
master the code. This text editor emulation interface exits when
the code is entered correctly. Although the tutor does present fur-
ther instructions about the running of the Applet on the world-
wide web (www), these details are presented in a lecture and dis-
cussion format for the classroom work reported here.

Figure 4: The text editor emulation interface presented during
the fifth stage.

PROCEDURE
The tutor was presented as the first exercise in a graduate

course (Fall, 2000) entitled “Graphical User Interface Systems
Using Java.” There were 12 graduate students in the class (eight
females, median age = 27.5; four males, median age = 30). Prior
to using the tutor, each student completed a questionnaire in which
was presented two rating scales. The first rating scale assessed the
student’s prior experience with Java, and it consisted of the fol-
lowing instruction and five choices:

How would you describe your experience with Java as of
this moment?

1 = No experience. (I am a novice in Java.)
2 = Some experience.
3 = Moderate experience.
4 = Much experience.
5 = Extensive experience. (I am an expert in Java.)

The second rating scale assessed the confidence that the stu-
dent currently had in being able to use each of the 24 unique Java
items to write a Java computer program. The rating scale consisted
of the following instruction and five choices for each of the 24
items:

How confident are you that you can now use the following
symbol to construct a Java program?

1 = Not at all confident. I do not know how to use the symbol.
2 = Only a little confident.
3 = Fairly confident.
4 = Very confident
5 = Totally confident. I know how to use the symbol.

The student was also asked to write a Java Applet to display
a text string, as a Label object, in a browser window. Additionally,
the questionnaire solicited demographic information. All data were
collected and saved using the online assessment and recording fea-
tures of WebCT‘.

At the conclusion of the two hours that were allotted to the
tutoring system or whenever a student finished the tutor prior to
that time, a post-tutor questionnaire was completed. The confi-

158 • Managing Information Technology in a Global Economy

dence assessment scale and the writing of the Applet were repeated,
and three additional rating scales were administered. The first scale
instruction and choices were as follows:

What was your overall reaction to the tutor?
1 = Totally negative. I did not like the tutor.
2 = Only a little negative.
3 = Neutral.
4 = Only a little positive.
5 = Totally positive. I liked the tutor.

The second scale instruction and choices were as follows:
In terms of learning Java, how would you rate your expe-

rience in using the tutor?

1 = Totally negative. The tutor did not help me to learn Java.
2 = Only a little negative.
3 = Neutral.
4 = Only a little positive.
5 = Totally positive. The tutor did help me to learn Java.

The third scale instruction and choices were as follows:
How would you rate the usability of the tutor?
1 = Totally negative. The tutor was difficult to use.
2 = Only a little negative.
3 = Neutral.
4 = Only a little positive.
5 = Totally positive. The tutor was easy to use.

The students were then dismissed from the class, and the
tutor continued to be available for those students who were moti-
vated to access the tutor outside of class.

During the immediately succeeding class period, which oc-
curred one week later, the instructor discussed the Applet code
with the students using a lecture format (“chalk and talk”). The
approach was to have the students enter the code into a text editor
at the time the items were presented and discussed on the board.
The www directory tree and HTML file were also presented and
discussed. The students then compiled the Java code and ran the
Applet in a Netscape Communicator browser by accessing the
HTML file as a URL on the web. During these latter events, the
students were encouraged to help each other and to seek help from
the instructor and course assistant as needed. After all students ran
the Applet on the web, they again completed the confidence rat-
ings and the writing of the Applet code in the assessment ques-
tionnaire. This identical assessment was repeated during the four-
teenth class, the final class of the semester.

RESULTS
At the conclusion of the class time allotted for complet-

ing the tutor, six students had finished all parts of the tutor, and six
students were still working on the row by row or text emulation
interfaces. A comparison of the magnitude of the changes between
pre-tutor ratings and the next two rating occasions did not support
differences between these two groups in changes for post-tutor
ratings, F(1,10) = 0.75, p > .10, and post-applet ratings, F(1,10) =
2.48, p > .10. Accordingly, the two groups were pooled for the
following analyses.

Figure 5 presents box-plots displaying median confi-
dence ratings for all subjects for the 24 distinct items that were
used to compose the program. A box plot is presented across the
four assessment occasions: (1) pre-tutor, (2) post-tutor, (3) post-
applet, and (4) the final class. The figure graphically shows the
progressive increase in self-reports of confidence across the four

assessment occasions. A MANOVA approach to comparing means
based on the differences (D) between pairs of observations across
the six combinations of assessment occasions for all subjects
showed a significant effect of occasions, F(5,66) = 18.12, p < .001.
Pairwise contrasts supported the conclusion that the most depend-
able changes in median confidence occurred over the first two as-
sessment occasions. Since ordinal data are problematic for detect-
ing and interpreting small effect size differences, replication is the
preferred strategy for demonstrating the dependability of these
observations.

Figure 5: Box plots showing median confidence ratings for all
subjects for the 24 distinct items that were used to compose the
program.PRE = Pre-Tutor, POST = Post-Tutor, APPLET = Post-
Applet, and FINAL = Final Class.

Figure 6 presents the total number of correct Java programs
that were written into the questionnaire across the last three as-
sessment occasions. The data are presented as a cumulative total.
Since no subject wrote a correct program during the pre-tutor as-
sessment, the figure does not portray that outcome. The figure
shows that immediately after completing the tutor, which required
one accurate construction of the entire program, only two subjects
(S2 & S5) were able to write the program correctly. After the sub-
jects received classroom instruction and ran the Applet, eight of
the 12 subjects were able to write the program correctly. Notably,
however, on the final assessment occasion , which occurred 12
weeks later, only one subject (S3) was able to write the program
correctly. These data show the improvement in performance over
the first three repetitions of writing the program and the forgetting
of the program after the 12-week delay interval.

2001 IRMA International Conference • 159

 Figue 6: Cumulative total correct programs written on the last
three assessment occasions.

Figure 7 presents rating choices on the following four self-
report scales: (1) prior experience with Java, (2) overall impres-
sion toward the tutor, (3) usefulness of the tutor in learning Java,
and (4) usability of the interfaces. The data are grouped into those
students who completed the tutor and those students who did not
complete the tutor during the first classroom period. For Experi-
ence, only Subject 5 reported slight experience with Java prior to
using the tutor. For Overall, five of the “completers” and one “non-
completer” reported the maximum scale value. Although the val-
ues seem graphically lower for the non-completers, a Wilcoxon
ranks test did not support a significant difference between the
groups on this or any other scale (all p > .20). Similar effects were
observed for Learning. For Usability, eight of the 12 subjects re-
ported the highest scale value. It is also notable that Subject 8,
who was in the “non-completers” group, gave consistently low
ratings on these scales and also did not show accurate Applet con-
struction on any of the three assessment occasions. Despite these
reports, that subject did show an increase in reported confidence
in the use of the Java items across the four assessment occasions.
In summary, these self-report data support the conclusion that al-
most all subjects had positive reactions to the tutoring system and
its methodology for programming a series of interactive instruc-
tional events.

Figure 7: Self-report data on four scales.

DISCUSSION
This study investigated a PSI for acquiring fundamental

knowledge of a Java Applet. The instructional design of a Java
tutoring system followed programmed instruction principles, which
were supplemented with students’ personal interactions with the
course instructors and collaborations with peers. In contrast to
passive online tutorials that only display information, no matter
how skillfully organized and delivered within a hypermedia envi-
ronment, the present tutoring system required learners actively to
construct correct responses during the training. The level of com-
plexity of the learned and constructed response was systematically
increased until the final response was the production of the entire
Java program. The programmed instruction component was aug-
mented by a discussion with an “expert” that culminated in the
learner’s running of the Applet on the world-wide web. These fac-
tors together characterize a Personalized System of Instruction.

Although the data generally show confidence and perfor-
mance improvements at least across the first three assessment oc-
casions, it is notable, however, that only one student was able to
write the Applet code correctly at the end of the course. This out-
come presents a challenge for interpretation, especially since the
course content throughout was the cumulative construction of an
interactive information system using Java.

One way to understand this outcome, perhaps, is to consider
the fact that the Java Applet class was taught and discussed only
during the first two sessions of the course. The other components
of the Java AWT that were taught over the remaining class periods
did not involve repeating the initial Applet construction. It is also
the case that the instructor emphasized to the students the impor-
tance of seeking and using online information from Sun
Microsystems, Inc. about the construction and manipulation of the
interface components that were presented in the course. In that
sense, the students were not encouraged to memorize Java code.
They were encouraged to seek out and use information as profes-
sionals. Furthermore, students were not required to write Java code
on examinations, although they were required to interpret code
fragments based on information presented in the course study
guides. Nevertheless, these findings indicate the importance of
repetition in achieving a fundamental competence that sets the
occasion for future confidence and learning, and they show that
students within a group may require different amounts of practice
to achieve the identical level of skill. They also show that compe-
tence displayed on one occasion may not be easily retained.

Despite these observations, the Personalized System of In-
struction (Keller, 1968), with the Java tutoring system as the cen-
tral component, has been adopted by the authors to good advan-
tage in the classroom because it generates a history of symbol use
and program construction competence in each individual student.
It combines both teaching and testing within a single conceptual
framework: programmed instruction. It allows the needs of the
individual student to be met because it frees the teacher from rely-
ing exclusively on traditional approaches, such as lecturing and
writing on the board, to deliver technical information to a group of
students. Most importantly, perhaps, the present tutoring system
combines knowledge delivery with learning, assessment, and docu-
mentation of competence. Although the number of subjects in the
present study was low, the concentration on the behavior of the
individual learner, rather than on group averages, together with
past and planned future replications with different class groups,
enables the cumulative development of a knowledge base that will
document the reliability of the current findings under conditions
that promote the generality of the programmed instruction meth-
odology.

160 • Managing Information Technology in a Global Economy

Much has been written about the nature of computer pro-
gramming and the attainment of expertise as a high-level prob-
lem-solving activity (e.g., Anderson, Corbett, Koedinger, &
Pelletier, 1995). Our classroom experience, however, continues to
indicate the importance of not overlooking basic learning param-
eters of guided rehearsal and correct practice. These latter condi-
tions help make computer programming accessible to inexperi-
enced and unconfident students who may otherwise withdraw from
the initial effort required to achieve the background competence
necessary to acquire advanced programming skills. Although it is
certain that complex problem-solving skills and conceptual un-
derstanding are considerations in the development of expertise as
a computer programmer, there is, perhaps, underestimated value
to fostering an inductive development of these important outcomes
by the simple repetition of fundamental response patterns.

REFERENCES
Anderson, J.R. (1995). Learning and Memory: An Integrated Ap-

proach. New York: Wiley.
Anderson, J.R., Corbett, A.T., Koedinger, K.R., & Pelletier, R.

(1995). Cognitive tutors: Lessons learned. Journal of Learning
Science, 4, 167-207.

Bloom, B.S. (1984). The 2 sigma problem: The search for meth-
ods of group instruction as effective as one-to-one tutoring.
Educational Researcher, 13, 4-16.

Brock, J.F. (1997). Computer-based instruction. In G. Salvendy
(Ed.), Handbook of Human Factors and Ergonomics (pp. 578-
593). New York: Wiley.

Durham, A.G., & Emurian, H.H. (1998). Learning and retention
with a menu and a command line interface. Computers in Hu-
man Behavior, 14, 597–620.

Emurian, H.H., Hu, X., Wang, J. & Durham, A.G. (2000). Learn-
ing Java: A programmed instruction approach using Applets.
Computers in Human Behavior, 16, 395-422.

Ferster, C.B., & Perrott, M.C. (1968). Behavior Principles. New
York: Appleton-Century-Crofts.

Greer, R.D., & McDonough, S.H. (1999). Is the learn unit a fun-
damental measure of pedagogy? The Behavior Analyst, 22, 5-
16.

Holland, J.G. (1960). Teaching machines: An application of prin-
ciples from the laboratory. Journal of the Experimental Analy-
sis of Behavior, 3, 275-287.

Keller, F.S. (1968). Goodbye teacher... Journal of Applied Behav-
ior Analysis, 1, 79-89.

Kritch, K.M., & Bostow, D.E. (1998). Degree of constructed-re-
sponse interaction in computer-based programmed instruction.
Journal of Applied Behavior Analysis, 31, 387–398.

Li, S., & Lewandowsky, S. (1995). Forward and backward recall:
Different retrieval processes. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21, 837-847.

Reigeluth, C.M., & Darwexeh, A.N. (1982). The elaboration
theory’s procedures for designing instruction: A conceptual
approach. Journal of Instructional Development, 5, 22-32.

Skinner, B.F. (1958). Teaching machines, Science, 128, 969-977.
Tennyson, R.D., & Schott, F. (1997). Instructional design theory,

research, and models. In R.D. Tennyson, F. Schott, N.M. Seel,
& S. Dijkstra (Eds.), Instructional Design: International Per-
spectives (pp. 1-16), Mahwah, NJ: Lawrence Erlbaum Associ-
ates.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/personalized-system-instruction-

teaching-java/31600

Related Content

Application of Desktop Computing Technology Based on Cloud Computing
Kai Zhang (2021). International Journal of Information Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/application-of-desktop-computing-technology-based-on-cloud-computing/278707

Metaheuristic Algorithms for Detect Communities in Social Networks: A Comparative Analysis

Study
Aboul Ella Hassanienand Ramadan Babers (2018). International Journal of Rough Sets and Data Analysis

(pp. 25-45).

www.irma-international.org/article/metaheuristic-algorithms-for-detect-communities-in-social-networks-a-comparative-

analysis-study/197379

Software to Optimize Productivity and Efficiency
William Philip Walland Adiwit Sirichoti (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 5263-5270).

www.irma-international.org/chapter/software-to-optimize-productivity-and-efficiency/112975

Half Century for Image Segmentation
Yu-Jin Zhang (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 5906-5915).

www.irma-international.org/chapter/half-century-for-image-segmentation/113048

Software Engineering and the Systems Approach: A Conversation with Barry Boehm
Jo Ann Lane, Doncho Petkovand Manuel Mora (2008). International Journal of Information Technologies

and Systems Approach (pp. 99-103).

www.irma-international.org/article/software-engineering-systems-approach/2542

http://www.igi-global.com/proceeding-paper/personalized-system-instruction-teaching-java/31600
http://www.igi-global.com/proceeding-paper/personalized-system-instruction-teaching-java/31600
http://www.irma-international.org/article/application-of-desktop-computing-technology-based-on-cloud-computing/278707
http://www.irma-international.org/article/metaheuristic-algorithms-for-detect-communities-in-social-networks-a-comparative-analysis-study/197379
http://www.irma-international.org/article/metaheuristic-algorithms-for-detect-communities-in-social-networks-a-comparative-analysis-study/197379
http://www.irma-international.org/chapter/software-to-optimize-productivity-and-efficiency/112975
http://www.irma-international.org/chapter/half-century-for-image-segmentation/113048
http://www.irma-international.org/article/software-engineering-systems-approach/2542

