
2001 IRMA International Conference • 235

II. INTRODUCTION
As we consider a future of very intelligent machines, we

need enabling technologies that will allow us to represent and rea-
son about all forms of knowledge. Those enabling technologies
will concern themselves not only with hardware improvements,
but much more importantly, with software improvements. We
could have the fastest chips, busses, and memory conceivable, and
we could have the most capacious memory and storage medium,
yet without very significant improvements to our reasoning meth-
ods, all we gain is faster turnaround time and greater throughput.
We need processing abilities, reasoning abilities, that are orders of
magnitude beyond current technology.

The software improvements we need are not concerned so
much with programming languages and operating systems, impor-
tant as these are. Rather, we are concerned with the essence of
thought. How do we get an inanimate object to perform such
thought? The quest of the artificial intelligence community at large
is to produce a self-sufficient reasoning machine much like the
computer ‘HAL’ in the movies “2001: A Space Odyssey”, and
“2010: The Year We Make Contact”. A more contemporary
example is the robot in the movie “BiCentennial Man”.

While others exalt the nature of such a successful inanimate
object (Moravec 1999), the bottom line is that we have to devise
ways to get something akin to a doorstop to perform magnificent
feats that we call thought. This is incredibly difficult. We need
strategies or methods to perform very difficult forms of reasoning.
We also need these strategies to be on solid theoretical foundations.
This is the goal of the declarative semantics of logic programming.
The quip is that we need to reason in semantically correct ways.

Reasoning methods are only part of the requirement for deep
reasoning. Another part of the picture is that we need knowledge.
A successful machine reasoner must posses both: a large quantity
of knowledge, and the ability to use that knowledge to create new
knowledge (make inference, make decisions, etc.) Traditionally,
databases have been viewed as the repository of vast amounts of
information, while logic programming has been viewed as an infer-
ence engine to allow us to derive new information from existing

information. In this paper, we are concerned about negation in
these fields, since: 1) these fields are related, and 2) we desire to
provide a greater appreciation for the power of logic programming.
The overlap of these two fields, that is, intelligent databases, has
come to be known as deductive databases.

The next section primarily discusses what weak negation
means. In cursory manner, it also discusses strong negation. Strong
negation in logic programming is something SQL does not have an
analogue for. The subsequent section illustrates by way of ex-
amples how weak negation is far more powerful than negation in
SQL. While formal proofs are beyond the scope of this paper, it
should be apparent that weak negation completely subsumes nega-
tion in SQL, and far exceeds the expressive power of negation in
SQL. It is assumed that the reader has a working knowledge of
SQL. (For those readers not very familiar with SQL, (Connolly,
Begg 1999) provides an excellent and very readable discussion of
SQL.)

Throughout, reference will be made to relational databases.
From the point of view of semantics, relational databases have a
very strong mathematical foundation, and therefore a good subject
for us to consider. From this standpoint, the reader should not
view relational databases as passe’, preferring object oriented data-
bases or multimedia databases instead. For the purposes of this
discussion, from the view of semantics, object oriented databases
and multimedia databases do not offer greater expressive power.
This is not to say that these advanced databases are not very
useful, and this is not to say that these databases do not allow us to
incorporate new types of information. This is to say that seman-
tically speaking, there is not a difference between pointing to a
scalar value and pointing to an X-ray in terms of abstract compu-
tational complexity.

III. WEAK NEGATION IN LOGIC PROGRAMMING
Negation is quite an important topic in logic programming

(Apt, Bol 1994). From the point of view of semantics, there are
two primary forms of negation in logic programming. One form of

“Not” is Not “Not”
Comparisons of Negation in SQL and
Negation in Logic Programming
James D. Jones, Computer Science, College of Information Science and Systems Engineering

University of Arkansas at Little Rock, james.d.jones@acm.org, phone: 501-569-8138, fax: 501-569-8144

I. ABSTRACT
Logic programming presents an excellent paradigm within which to develop intelligent systems. In addition to the routine sorts of

reasoning we would expect such a system to perform, the state of the art in logic programming allows one to reason explicitly about false
information, to reason explicitly about unknown or uncertain information (the subject of this paper), and to reason introspectively in spite
of holding multiple competing ways of viewing the world. Each of these abilities are necessary forms of reasoning, and each are lacking
from current technology. Needless to say, each of these abilities are also lacking from relational databases. In this paper, the focus is upon
the expressive power of weak negation in logic programming. Weak negation is not well understood, and can be easily confused with
negation in SQL. In particular, some may falsely equate weak negation with the “not exists” clause of SQL. It is true that both forms of
negation do have some similarity. However, the expressive power of weak negation far exceeds that of “not exists” in SQL. To a much
lesser extent, we shall also consider strong negation in logic programming.

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

236 • Managing Information Technology in a Global Economy

negation is strong negation (Gelfond, Lifschitz 1990), or classical
negation, and is designated by the operator¬. This form of nega-
tion means that something is definitively false. An example would
be something such as

¬angry(john).

which means that it is a fact (with respect to our view of this
world) that john is not angry. Now such a fact may be explicitly
stated, or it may be inferred. Nonetheless, with respect to the
beliefs of our program, it is definitively believed that john is not
angry.

The other form of negation is weak negation (or negation-as-
failure) (Lifschitz 89). This form of negation is designated by the
operator not which means that a fact is not known (or more pre-
cisely, not provable.) For instance,

not angry(john)

means it cannot be proven that john is angry. That is, with
respect to our view of the world, it is not currently believed that
john is angry. In fact, john may be angry, or john may not be angry,
however, with respect to our knowledge (as embodied by our
database or logic program), neither of these facts can be deter-
mined. (Actually, this statement is too strong, and a more correct
statement is beyond this paper. However, the intuitive meaning of
this statement can be easily implemented) The first example states
that it is definite that john is not angry; the second example states
that it is not believed that john is angry. The second is a far weaker
statement about john’s anger. In the first example, there is pres-
ence of information that causes us to hold this belief; in the second
example, there is absence of information that causes us to hold this
belief. This is a vital distinction.

It is weak negation that provides the ability to represent and
reason explicitly about unknown or uncertain information. It is
important to note that weak negation is part of an inference mecha-
nism, and is not at all mutually exclusive with or in competition
with other forms of uncertain reasoning such as fuzzy sets, cer-
tainty factors, neural nets, or probability theory. Further, not only
can we represent the fact that there is absence of information, but
we can also use such a fact to infer new information. Consider the
following:

safe(sue) ¬ not angry(john)

which states that sue is safe if it is not known that john is
angry. (Perhaps sue knows that if john were angry, she would
know about it, because john is so transparent.)

The confusion
These forms of negation in logic programming, and in par-

ticular weak negation, can easily be confused with negation in SQL.
It is easy to see how such a confusion can arise. First of all, there
is a syntactic similarity between weak negation’s operator not and
SQL’s not exists. Secondly, there is an intuitive similarity in that
both express the fact the some information is missing. To illustrate
these two reasons for the confusion, let us consider the following
example.

Example 1
Assume that the following is a database for a company that

places its employees on contract with other firms.

EMPLOYEE
Name Skill Availability
John carpenter full-time
Jay plumber full-time
Mark manager full-time
Sally accountant part-time

CURRENTLY ASSIGNED
Name Contracting Org. Hrs. of Contract Remaining
John Alltel 500 hours
Sally RCA 120 hours

The EMPLOYEE relation lists all employees. The
CURRENTLY_ASSIGNED relation lists those employees that
are already out on contract. These relations could be equivalently
expressed as a logic program, as in the following:

employee(john, carpenter, full-time).
employee(jay, plumber, full-time).
employee(mark, manager, full-time).
employee(sally, accountant, part-time).
currently_assigned(john, alltel, 500).
currently_assigned(sally, rca, 120).

Suppose we are interested in identifying those employees
that are not yet contracted out. In SQL, such a request would be
satisfied by the query:

SELECT *
FROM employee
WHERE NOT EXISTS

(SELECT *
 FROM currently_assigned
 WHERE employee.name = currently_assigned.name);

This query will produce a report on which only jay and
mark appear. The exact same information could be gleaned from a
logic program using the following rule:

available_for_work(Name,Skill,Availability) ←
employee(Name, Skill, Availability),

not currently_assigned(Name, Contracting_org,
Hours_remaining).

This rule states that those employees available for work
(contract) are those not currently assigned.

In this example, the two paradigms produce exactly the same
results. It is easy to see the syntactic similarity: SQL uses the
form NOT EXISTS (... currently_assigned), and logic programming
uses the form not currently_assigned. In both cases, not appears.
It is also easy to see the intuitive similarity: in both cases we
trigger on the fact that something is missing. As we will see in the
next section, the similarity ends here.

IV. COMPARISON OF WEAK NEGATION, AND
NEGATION IN SQL

Those who are not intimately informed of the semantics of
logic programming may fail to see the additional expressive power
that logic programming provides over SQL. This section focuses
only on one aspect of logic programming, weak negation. The
purpose here is to examine by way of examples negation in each of
these two paradigms to demonstrate the greater expressive power
that weak negation provides.

2001 IRMA International Conference • 237

Example 2
Let us return to the example 1 of the previous section. The

example, as stated, produces the exact same results as the SQL
query. That example uses the logic programming rule:

available_for_work(Name, Skill, Availability) ←
employee(Name, Skill, Availability),

not currently_assigned(Name, Contracting_org,
Hours_remaining).

Admittedly, this rule matches our intuition, and it produces
the desired results. Both paradigms, SQL and logic programming
yield that same results, that is that jay and mark are available for
work. From this point on, the similarities between SQL and logic
programming cease. The remainder of this example, and the other
examples exceed the expressive power of SQL.

If we dropped the goal employee(X, Y, Z), then we would
have the following rule:

available_for_work(Name, Skill, Availability) ←
not currently_assigned(Name, Contracting_org,

Hours_remaining).

This rule is a much more powerful rule and would have
yielded all objects in our Herbrand interpretation which/who are
not currently assigned. Consider for instance, that we also had the
following relation:

FORMER EMPLOYEE
Name
Rachel
Suzzie
Bob

Then in addition to jay and mark, this rule would also infer
that rachel, suzzie, and bob are available to work. The additional
inferences that rachel, suzzie, and bob are also available to work
are beyond the expressive ability of SQL. There may be applica-
tions where ascribing a property or a relation to the rest of the
objects of the Herbrand interpretation is appropriate. •

Unfortunately, in this example, the rule as it stands would
also infer that carpenter, plumber, part-time, etc., are available for
work, because these are also objects in our Herbrand interpreta-
tion. However, appropriate constraints could be placed upon the
rule so that we do get the results we desire. The point is not that
the above rule yields counter-intuitive results; the point is that
given the same data, logic programs have the ability to infer far
more than what SQL will produce for us. As already mentioned,
there may be applications where this unthrottled approach is suit-
able. Yet, we also have the ability to restrict our inferences to get
the same results as does SQL.

It is very important to note that with logic programming, we
have the power of inference. By contrast, with SQL, we have static
reporting capability. Inference is dynamic. In a sense, it updates
our database. So regardless which version of the logic program-
ming rule we use (the rule from example 1, or the rule from example
2), the result is a more informed database.

It is also important to note that in some respect, we have
inferred something from nothing. (There is not truly nothing,
because the definition of a Herbrand interpretation identifies the
object constants in our language.) In example 1, SQL had success
in producing results by referring to an existing relation, EM-

PLOYEE. By contrast, the logic programming rule introduced in
example 2 yielded names that exist in the FORMER_EMPLOYEE
relation without ever referring to that relation.

A very powerful feature of weak negation is that it allows us
to express uncertainty in the sense that we may express that one or
more of several alternatives may be true. This ability induces
several competing views of the world. Yet, we still have the ability
to reason in spite of these competing views, as demonstrated in
this next example.

Example 3
Let us return to the relations from example 1. Assume that

we are recruiting a new-hire for a position, and we have narrowed
the field down to two candidates: tom and victoria. That is, at this
moment, we know that we will hire either tom or victoria, but we
do not yet know which. Therefore, with respect to this example,
we have two competing views of the world: one in which tom will
be hired, and another in which victoria will be hired. Let us lay
aside the additional complexities which a temporal database would
have (that is, the ability to reason across multiple views of time),
and consider that whichever candidate we will hire is available for
work (at some time in the future). We have two candidates for
what our relations would look like. One view of our world indi-
cates that we will hire tom, represented by the following relations.

EMPLOYEE
Name Skill Availability
John carpenter full-time
Jay plumber full-time
Mark manager full-time
Sally accountant part-time
Tom doctor full-time

CURRENTLY ASSIGNED
Name Contracting Org. Hrs. of Contract Remaining
John Alltel 500 hours
Sally RCA 120 hours

Given this view of the world (with respect to this example),
the same SQL query or the same logic programming rule from
example 1 would inform us that jay, mark, and tom have not been
assigned to a contract, and are available for work.

The other view of our world indicates that we will hire
victoria. The relations in this view of the world are represented by
the following.

EMPLOYEE
Name Skill Availability
John carpenter full-time
Jay plumber full-time
Mark manager full-time
Sally accountant part-time
Victoria doctor full-time

CURRENTLY ASSIGNED
Name Contracting Org. Hrs. of Contract Remaining
John Alltel 500 hours
Sally RCA 120 hours

Given this view of the world, the same SQL query or the
same logic programming rule from example 1 would inform us that
jay, mark, and victoria have not been assigned to a contract, and are
available for work.

238 • Managing Information Technology in a Global Economy

Clearly, the results of these two queries are different. Rela-
tional database technology does not have the capacity to represent
these two competing ways of viewing the world. Certainly, if we
cannot represent it, we cannot query against it with SQL. By
contrast, this information is very easily represented by the follow-
ing logic program.

employee(john, carpenter, full-time).
employee(jay, plumber, full-time).
employee(mark, manager, full-time).
employee(sally, accountant, part-time).
currently_assigned(john, alltel, 500).
currently_assigned(sally, rca, 120).
employee(tom, doctor, full-time) ←
 not employee(victoria, doctor, full-time)
employee(victoria, doctor, full-time) ←
 not employee(tom, doctor, full-time)

This logic program has two belief sets: one in which tom is
considered an employee, and one in which victoria is considered an
employee. (Note that in terms of logical entailment, the order of
the rules is completely unimportant. The new information has
been added to the bottom to make it easier to identify the differ-
ences between the examples.)

In addition to being able to represent and reason about differ-
ent views of the world, logic programs can also reason about sets of
items (Beeri, et.al 1991; Dovier, et. al. 1996; Jones 1999). That is,
a set can be a term, an object of the universe of discourse. A term
is akin to a single cell in a relation. (A single cell being the intersec-
tion of a tuple and an attribute.) The concept of a set of values to
be taken as the current value of a cell is totally lacking from rela-
tional technology. Consider the following example.

Example 4
Let us consider who is on the payroll at a particular com-

pany. This company has a basketball team that it supports as a
publicity aid. Since the composition of the team constantly changes
(personnel turnover, the total number of players fluctuates, etc.),
the company has adopted the practice that it writes one check to
the team as a whole, and the team distributes those proceeds as it
sees fit. So, those on the payroll include the employees of the
company, and the basketball team (which is treated as a single
entity.)

The following represents the basketball team:

basketball_player(tony).
basketball_player(hakim).
basketball_player(clyde).
basketball_player(michael).
basketball_player(stuart).
basketball_player(henry).

The following rules (appealing to the information from ex-
ample 1) represents who is on payroll.

on_payroll(Name) ← employee(Name, Skill, Availability).
on_payroll(Set) ← setof(Name, basketball_player(Name),

Set).

The intensional relation on_payroll is the following.

on_payroll(john).
on_payroll(jay).
on_payroll(mark).

on_payroll(sally).
on_payroll({tony, hakim, clyde, michael, stuart, henry}).

We see that there are five entities on payroll: john, jay, mark,
sally, and the set of players {tony, hakim, clyde, michael, stuart,
henry}.

This ability to represent and reason about collections of
objects is very important. Further, the ability define such collec-
tions intensionally (that is, by a somewhat mathematical definition
rather than explicitly listing the collection) is very powerful. Al-
lowing the intensional definition to use the full power of logic
programming formulae, including weak negation, is powerful in-
deed. The following example shows the use of constructing such a
set using weak negation.

Example 5
Continuing from the previous example, let us assume that

this same company also provides athletic scholarships to the local
university. The company has the stipulation that recipients of the
athletic scholarship must also play for the company team. How-
ever, since the individual is receiving a scholarship, the individual is
not to receive compensation from the team. In this strange world
that we are constructing, this does not violate NCAA rules. The
following rule represents the fact that henry is on scholarship.

on_scholarship(henry).

Now let us rewrite the rules for defining who is on payroll.

 on_payroll(Name) ← employee(Name, Skill, Availability).
 on_payroll(Set) ← setof(Name,(basketball_player(Name),

not on_scholarship(Name)), Set).

Now the intensional relation on_payroll is the following.

on_payroll(john).
on_payroll(jay).
on_payroll(mark).
on_payroll(sally).
on_payroll({tony, hakim, clyde, michael, stuart}).

In the previous example, henry was among the set of basket-
ball players considered on payroll. In this example, henry is not
among the set of basketball players considered on payroll. This
difference has been achieved by the use of weak negation in the
intensional set definition, all of which is not achievable in relational
databases and SQL.

IV. SUMMARY AND FUTURE WORK
This paper has examined the simplest form of weak nega-

tion: that which appears in extended logic programs. Even ex-
tended logic programs are beyond current practice in terms of
expressive power. There are yet more powerful semantics for logic
programs which introduce additional opportunities for weak nega-
tion to represent different classes of problems. This present work
could be extended to consider those more powerful languages.

In comparing weak negation with negation in SQL, we have
seen by example that weak negation can represent the same infor-
mation as that represented by SQL. We have also seen several
other examples where weak negation can represent problems not
able to be expressed in relational databases. These examples in-
clude: the fact that in its simplest form, weak negation can perform

2001 IRMA International Conference • 239

more inferences than SQL (appealing to ground terms in the Herbrand
interpretation); the fact that weak negation allows us to represent
multiple views of the world; the fact that extended logic programs
(which are the minimum platform for weak negation) can be ex-
tended to allow representation of sets (extensional and intension-
ally); and the fact that weak negation can be used in those inten-
sionally set definitions.

There are other ways that this present work can be expanded.
Future work can recast the present work into a more formal work
with proofs. Considering a totally different matter, a related con-
cept to negation is missing information. Future work could exam-
ine the relationship between null values in database technology and
weak negation. Further, SQL does allow nesting of subqueries.
(Such would be of the form of a subquery that uses the Anot
exists@ clause.) Perhaps the limits of nesting should be consid-
ered. Very much related to this is the idea that SQL deals with only
one relation at a time, and deals sequentially and deterministically
with multiple relations. In logic programming, multiple relations
can easily be dealt with in all possible combinations of Horn clauses,
strong negation and weak negation, and order does not matter (to
semantics.) Further, parallelism does not affect the semantics.
The comparison between database technology and logic program-
ming could be continued along these lines of nesting, and consider-
ing multiple relations nondeterministically.

REFERENCES

(Apt, Bol 1994) Apt, Krzysztof R., and Roland N. Bol:
Logic Programming and Negation: A Survey, Jour-
nal of Logic Programming, vol 19/20 May/July
1994.

(Beeri, et. al. 1991) Beeri, S. Naqvi, O. Shmueli, and S. Tsur:
Set Constructors in a Logic Database Language, Journal
of Logic Programming, 10(3):181-232, 1991.

(Connolly, Begg 1999) Connolly, Thomas, and Carolyn Begg:
Database Systems, A Practical Approach to Design,
Implementation, and Management, 2nd Ed., Addison-
Wesley, 1999

(Dovier et. al. 1996) Dovier, Agostino, Enrico Pontelli, and
Gianfranco Rossi: {log}: A language for programming
in logic with finite sets, Journal of Logic Programming,
28(1):1-44, 1996.

(Gelfond, Lifschitz 1990) Gelfond, Michael, and Vladimir
Lifschitz: Logic Programs with Classical Negation. In
D. Warren and Peter Szeredi, editors, Logic Program-
ming: Proceedings or the 7th Int=l Conf, 1990.

(Lifschitz, 1989) Lifschitz, Vladimir: Logical Foundations
of Deductive Databases, Information Processing 89,
North-Holland

(Jones 1999) Jones, James D.: AA Declarative Semantics
For Sets Based on the Stable Model Semantics@, De-
clarative Programming with Sets (DPS >99), in conjunc-
tion with Principles, Logics, and Implementations of high-
level programming languages , Paris, France, Paris,
France, 1999

(Moravec 1999) Moravec, Hans: ROBOT, Mere Machine to
Transcendent Mind, New York, NY, : Oxford University
Press, 1999

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/not-not-not-comparisons-

negation/31616

Related Content

Researching IT Capabilities and Resources: An Integrative Theory of Dynamic Capabilities and

Institutional Commitments
Tom Butlerand Ciaran Murphy (2009). Handbook of Research on Contemporary Theoretical Models in

Information Systems (pp. 348-362).

www.irma-international.org/chapter/researching-capabilities-resources/35840

E-Business Value Creation, Platforms, and Trends
Tobias Kollmannand Jan Ely (2015). Encyclopedia of Information Science and Technology, Third Edition

(pp. 2309-2318).

www.irma-international.org/chapter/e-business-value-creation-platforms-and-trends/112644

Instructional Support for Collaborative Activities in Distance Education
Bernhard Ertl (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 2239-2248).

www.irma-international.org/chapter/instructional-support-for-collaborative-activities-in-distance-education/112635

Forensic Investigations in Cloud Computing
Diane Barrett (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1356-

1365).

www.irma-international.org/chapter/forensic-investigations-in-cloud-computing/183849

Reversible Data Hiding Scheme for ECG Signal
Naghma Tabassumand Muhammed Izharuddin (2018). International Journal of Rough Sets and Data

Analysis (pp. 42-54).

www.irma-international.org/article/reversible-data-hiding-scheme-for-ecg-signal/206876

http://www.igi-global.com/proceeding-paper/not-not-not-comparisons-negation/31616
http://www.igi-global.com/proceeding-paper/not-not-not-comparisons-negation/31616
http://www.irma-international.org/chapter/researching-capabilities-resources/35840
http://www.irma-international.org/chapter/e-business-value-creation-platforms-and-trends/112644
http://www.irma-international.org/chapter/instructional-support-for-collaborative-activities-in-distance-education/112635
http://www.irma-international.org/chapter/forensic-investigations-in-cloud-computing/183849
http://www.irma-international.org/article/reversible-data-hiding-scheme-for-ecg-signal/206876

