
2001 IRMA International Conference • 253

1. INTRODUCTION
As software become more complex and sophisticated, so too

must the methods of writing these programs. Failure to take re-
sponsibility for errors will only mean more catastrophes. The
price for these failures is rising even today and it will be paid in the
future by the computer professionals’ through loose of dignity and
trust [13]. What follows are some examples of problems raised
when ethical issues in software engineering were ignored.

In a local newspaper on May 20, 1996, we found an article
with the following headline: “Bank error produces 800 near-bil-
lionaires.” The story was about a programming error that increased
the account balance by $924.8 million dollars for each of the bank’s
800 customers. This is a total of $763.9 billion, which are more
than six times the bank’s assets.

On May 7. 1996 in another local newspaper we found an
article with the title: “Error causes 2 jets to occupy same runway.”
This story explains how two passenger jets came within 1,500 feet
of each other on the same runway because both were assigned the
same flight number.

Another article titled “ Planes in Northwest lose link with air
traffic control center” appeared on January 7, 1996 and the story
explains how a regional center (part of a $1.4 billion computerized
system) lost communications with an aircraft for a few seconds
because of a software problem.

The following quotes were taken from a mug acquired at a
1982 ACM Computer Conference [2] in order to indicate to the
reader how far we have come with software engineering steps and
processes:
—Weinberger Law: “If builders built buildings the way program-

mers write programs then first woodpecker that came along
would destroy civilization.”

— Troutman’s Programming Laws: “If a test installation
functions perfectly all subsequent systems will malfunction;
not until a program has been on production for at least six
months will the most harmful error then be discovered; any
program will expand to fill any available memory.

—Gioub’s Laws of Computerdome: “The effort required to cor-
rect the error increases geometrically with time.”

—Hare’s Law of Large Programs: “Inside every large
program is a small program struggling to get out.”

The question is: What has changed or improved since 1982?
Can we say that “the more thing change the more they stay the
same?”

We believe that some of the problems in software develop-
ment can be dealt with by computing professional if they are
trained to explicitly practice ethical guidelines and accept their
social responsibilities. Software developers are held responsible
for the outcome of their software. Hence, they should also be held
responsible if their design is at fault. Furthermore, they should
assume total legal liability for their faulty and unreliable programs
and they should be required to let their clients know when their
systems fail to deliver something that is required of them, such as
a missing function when the clients need it. Basili and Musa [15]
consider such an event as a reliability problem and therefore a
failure.

2. ETHICAL ISSUES AND RESPONSIBILITIES
Each of the information and computing professional organi-

zations including the ACM, DPMA, ICCP, IEEE, etc. has a code
of ethics, which emphasizes responsibility. In the general Moral
Imperatives section 1.1 of the ACM Code of Ethics we read. “As
an ACM member I will ... Contribute to society and human well-
being.... An essential aim of computing professional is to minimize
negative consequences of computing systems, including threats to
health and safety. When designing or implementing systems, com-
puting professionals must attempt to ensure that the produce of
their efforts will be used in society responsible ways, will meet
social needs, and will avoid harmful effects to health and welfare”
[1].

The IEEE-CS/ACM Joint Task Force on Software Engineer-
ing Ethics and Professional Practices (http ://www.computer.org/
tab/seprof/code.htm) suggested the following as code of ethics for
software engineers:

“Software engineers shall commit themselves to making the
analysis, specification, design, development, testing and mainte-
nance of software a beneficial and respected profession. In accor-
dance with their commitment to the health, safety and welfare of
the public, software engineers shall adhere to the following Eight
Principles”:
1. Public - Software engineers shall act consistently with the

Ethical Issues in Software Engineering
Revisited

Ali Salehnia, Computer Science Department, South Dakota State University, Brookings, SD 57007, Phone: 605-688-5717, E-
mail: Ali_Salehnia@sdstate.edu

Hassan Pournaghshband, Department of Computer Science, Southern Polytechnic State University, 1100 South Marietta Parkway,
Marietta, GA 30060-2896, Phone: 770-528-4282, E-mail: hpournag@spsu.edu

ABSTRACT
The process of software development is usually described in terms of a progression from the project planning to the final code,

passing through intermediate stages such as requirement analysis, system design and coding system testing, and maintenance. One
important aspect of these requirements concerns the reliability of the software. The use of computers for life-critical systems demands
extremely high reliability of the computing functions as a whole. The consequences of negative results from unreliable systems and
software are becoming public knowledge every day. Since these situations create a negative image for computer professionals and since
these episodes create an environment of nontrust for the discipline, a good look at the ethical issues in software engineering is
necessary. In this paper, we look at each of the software engineering steps and the important aspect of their reliability and safety in
the analysis, design, and implementation of software. We also examine the ethical aspects of the software and system development.

This paper appears in Managing Information Technology in a Global Economy, the proceedings of the Information Resources Manage-
ment Association International Conference. Copyright © 2001, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

254 • Managing Information Technology in a Global Economy

public interest.
2. Client and Employer- Software engineers shall act in a manner

that is in the best interests of their client and employer and that
is consistent with the public interest.

3. Product - Software engineers shall ensure that their products
and related modifications meet the highest professional stan-
dards possible.

4. Judgment- Software engineers shall maintain integrity and inde-
pendence in their professional judgment.

5. Management- Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the manage-
ment of software development and maintenance.

6. Profession- Software engineers shall advance the integrity and
reputation of the profession consistent with the public inter-
est.

7. Colleagues- Software engineers shall be fair to and supportive
of their colleagues.

8. Self - Software engineers shall participate in lifelong learning
regarding the practice of their profession and promote an ethi-
cal approach to the practice of the profession.

We believe that ethical issues play a big role in the analysis
and development of software products. Wood, and et al. [23] argue
about the need for the information systems person to receive train-
ing in ethical implications and they indicate that the existence of
professional codes of practices is a clear indication that ethical
neutrality is not possible. They continue to argue “Self-reflection
by systems analysis on the ethical implications of their practice
should ensure that ethical decisions are not made implicitly for
them.”

A section of the IEEE Code of Ethics is stated as follows
“We the members of the IEEE do hereby commit ourselves to the
highest ethical and professional conduct and agree: To accept
responsibility in making engineering decision consistence with the
safety, health and welfare of the public, and, to disclose promptly
factors that might endanger the public or the environment. “ Since
software developers are considered engineers and scientists, they
should definitely abide by these guidelines and produce reliable
and safe products. Explaining the importance of the standards in
software engineering, Lee [13] indicates, “The time has come to
make software engineering a science rather than an art. Software
standards must be codified and programmers must strictly adhere
to those standards.” Adding, “writing software programs is no
less important than building a bridge, and it should be treated as
such.”

Balzer and Goldman propose [4,19] eight principles for good
specification: Principle #1. Separate functionality from implemen-
tation; Principle #2. A process-oriented systems specification lan-
guage is required; Principle #’3. A specification must encompass
the system of which the software is a component; Principle #4. A
specification must encompass the environment in which the sys-
tem operates; Principle #5. A system specification must be a cog-
nitive model; Principle #6. A specification must be operational;
Principle #7. The system specification must be tolerant of incom-
pleteness and augmentable; Principle#8. A specification must be
localized and loosely coupled.

One problem with the traditional software development
method is the specification changes during the system develop-
ment. Such changes have implications that may affect all parts of
the software, making the previous design inadequate [12]. A good
design requires taking into account the business, personal, and
social expectations of clients. Knowing the consequences of a faulty
program can increase the communication and cooperation between
the software design team and the users. This in turn can increase

the reliability and quality of the software.
While technical expertise and know how are important in

software design and development, understanding of the social sys-
tems in which the software is to be used is also very important. A
majority of the computer science and information systems depart-
ments teach programming and software engineering courses only
from the technical point of view rather than considering- the tech-
nical, organizational, sociological and ethical points of view. Huff
and Finholt [10] argue, “A dedication to a reliable product, a com-
mitment to open dealing with clients, and a concern for including
customer and employees in the design process are pans of both the
ACM ethics code and of quality design.”

3. SOFTWARE QUALITY AND RELIABILITY
ACHIEVEMENTS

Software reliability can be measured or estimated by using
historical and developmental data [19]. Software reliability is de-
fined as “the probability of failure free operation of a computer
program in a specified environment for a specified time” [15]. A
software reliability model can be used to characterize and predict
behavior important to managers and software engineers. While
software failure can be defined as nonconformance to software
requirements. Pressman [19] believes that “all software failure can
be traced to design or implementation problems. Further, he argues
that “Reliability is the most costly, performance characteristic to
assess and the most difficult to guarantee.” It is very important to
understand that the reliability of a computer program is an impor-
tant element of its overall quality. If a program frequently fails to
perform, it doesn’t matters whether other software quality factors
are acceptable or not.

Quality software is defined as: “Software that satisfies the
user’s explicit and implicit requirements, it well documented, meets
the operating standards of the organization, and runs efficiently on
the hardware for which it was developed.” Software quality may
be divided into three measures: operability (accuracy, efficiency,
reliability, integrity, security, timely, and usability); maintainabil-
ity (changeability, correctability, flexibility, and testability); and
transferability (code reusability, interoperability, and portability).
Ferdinand [8] states that “One can correctly opine that many
modern programming practices, along with the heavy data gather-
ing that often accompanies them, are necessary to achieve quality
products, but are in themselves not sufficient for reducing- defects
or significantly improving the level of software productivity sought
in software engineering.”

One way to ensure software quality and to achieve reliabil-
ity is to use formal methods, which means the user’s needs must be
expressed in a mathematical language. This technique is highly
reliable. However, errors can be introduced into the design during
the implementation process. Another way to insure the quality
and the reliability of software is to institute Software Quality
Assurance functions. Dunn and Ullman [7] present a list of tasks
that should be part of any software quality assurance plan: these
tasks are: 1. System design; 2. Software requirements specifica-
tion review; 3. Preliminary design review; 4. Detail design review:
5. Review of integration test plan; 6. code review: 7. Review of test
procedure; 8. Audit of document standards: 9. Configuration con-
trol audit; 10. Test audit, 11. Define data collection, evaluation and
analysis; 12. Tool certification; 13. Vendor and contractor over-
sight; and 14. Record keeping.

Also to ensure software quality and reliability the designers
should consider and enforce software security. Describing com-
puter security, Pfleeger [18] indicates that the attack on software

2001 IRMA International Conference • 255

may occur by the act of modification, interruption, deletion, and
interception. Changing a bit in its code can modify a program and
may causes the system to crash,. The three well-known categories
of software modification can be listed as: 1. Trojan Horse— a
program that overtly does one thing while covertly does another;
2. Trapdoor— a secret entry point to a program and 3. Program
leaks— a program making information accessible to unintended
people or programs [18]. Pfleeger [18] also indicates that a pro-
gram must be secure enough to exclude outside attack and must be
developed and maintained so that one can be confident of the
dependability of the program.

The ultimate goal of software quality is user satisfaction.
Basili and Musa [5] listing important attributes that satisfy users
state, “The attributes most often named as significant are function-
ality, reliability, cost, and product availability date. Reliability
often ranks first.” However, some obscure errors can have disas-
trous consequences. These reviews are also mandated by the De-
partment of Defense as part of the formal requirements for a
contractor’s quality assurance program [12].

The third way to achieve high reliability is fault tolerance.
Fault-tolerant computing is one method for increasing a system’s
useful lifetime. It should be not that for a given application, a
system could be sufficiently reliable without fault tolerance. Fur-
thermore, we would like to point out that using fault tolerant
doesn’t necessarily Guarantee that a system will be sufficiently
reliable for a particular application. Availability is the probability
that system will be operational at any given moment [9]. Software
fault tolerance allows a system to detect errors and to avoid the
failures, which result from them. If this objective is accomplished,
errors cause little or no visible degradation of performance or reli-
ability. The ultimate goal of software fault tolerance is to increase
the reliability, availability, and or safety levels in critical applica-
tions.

Software fault tolerance (SFT) techniques fall into three
groups: dynamic redundancy, fallback methods, and error isola-
tion. The fault-tolerance techniques used in real-time control sys-
tems seldom conform to the basic paradigm of software fault toler-
ance, recovery block or N-version programming, but rather tend to
be combinations of the three [3,6, 14].

Since the ultimate coal of software fault tolerance is to in-
crease the reliability, availability, and safety of critical applications
and since the ultimate goal of a CASE tool technology is to sepa-
rate the software system design from the implementation of pro-
gram code, therefore, the CASE tools should be very important for
SFT systems development. While the classical approaches to soft-
ware fault tolerant system does increase the complexity of the
software systems.

Fault-tolerant strategies are concerned with keeping the soft-
ware system functioning in the presence of errors. Strategies fall
into three groups: dynamic redundancy, fallback method and error
isolation [16]. One approach to dynamic redundancy is a process-
ing technique known as voting. Data is processed in parallel by
multiple identical devices and the output of these devices is com-
pared. If a majority of the devices have the same result that result
is assumed to be the correct one. Fallback or degraded-service
methods are appropriate when it is essential for the software sys-
tem to shutdown.

For instance, in a process-control system, if a software error
is detested that is causing the system to fail; a separate back up
piece of software may be loaded and executed to guarantee the safe
shutdown of all processes being controlled by the system. The
problem of common software faults given rise to similar errors in
redundant software still remains open. It may be that careful

analysis of a system design and requirement can identify danger-
ous or difficult components of the software are far special care
during later phases of development and tests.

3.1. REQIREMENT ANALYSIS
A requirement analysis tool allows a system engineer to

initiate, design, complete, modify, and maintain SFT systems. CASE
tools can also provide special features for requirement analysis and
documentation of the SFT systems. Functional requirement docu-
ments are often cast in a yen, specific, predefined format that
identify each and even, requirement down to every minute detail.
Each requirement in the requirements’ specification list should
have the features and constraints of each component along with the
whole structure of the SFT systems, or/and a technique for SFT
systems such as RB, N-version Programming, CBS, or RNB.

Requirement trace ability is an important method of demon-
strating SFT structures produced (or reliability of the product) to
satisfy user requirements. Usually, this is demonstrated in steps
by showing that the reliable SFT systems produced by the current
development step can be traced back to the previous step of the
software life cycle. For example, we should be able to trace back to
the requirement specification of SFT structure from the design
specification, or from the source code to the design specification.

The requirement of SFT systems trace ability at the code-
back-to-design is shown by automatically creating a structure chart
from the source and comparing this chart to the structure chart
created during the design phase. Therefore, the requirement speci-
fication should show the structure of SFT systems, components
of the SFT approach, and constraints of the SFT systems used in
the project.

3.2. SYSTEM DESIGN PHASE
Quality software is organized as a set of independent mod-

ules, each of which can be designed and tested separately. Each
module views the other as black box with well-defined sets of
inputs and outputs. Each module is accessed only through these
inputs and outputs. This logical segregation of functionality is not
only a key factor for ordinary software development but also a
main factor of SFT systems implementation.

4. CONCLUSION
The process of software development is usually described in

terms of a progression from the project planning to the final code,
passing through intermediate stages such as requirement analysis,
system design and coding system testing, and maintenance. One
important aspect of these requirements concerns the reliability of
the software. The use of computers for life-critical systems de-
mands extremely high reliability of the computing functions as a
whole. Applications that pace the state of art in this regard include
spacecraft.

Fly-by-wire systems for passenger aircraft, safety systems
for nuclear reactor, and traffic control system for tracked vehicles
and aircraft. The need for high reliability of software components
of these life-critical systems has become more apparent with the
increasing functionality being ascribed. One result of this increased
functionality is the recommendation of various designs for achiev-
ing fault tolerant system.

The ultimate goals of a software system are to increase the
quality, reliability, and availability, and safety of critical applica-
tions. Even though, the classical approaches to software quality,
reliability, and fault tolerant systems increase the complexity and
cost of large software systems, the implication of ethical issues can
address same of these problems. An engineering approach with

256 • Managing Information Technology in a Global Economy

ethical issues in mind will enable the software developers to pro-
duce reliable software and in accordance with user requirements.

REFERENCES
“ACM’s Code of Ethics and Professional Conduct”. Communica-

tion of the ACM, Vol. 36, No. 12, 1993.
Art 101. Limited, Atlanta, GA. 1982
Avizienis. A. (1985). ‘The N-version approach to Fault-

Tolerance Software.” IEEE Trans. Software Eng. No. 1 SE-11.
Pp 1491-l497. Dec. 1985.

 Balzer. R. and N. Goodman (1979) . “‘Principle of Good Soft-
ware Specification,” Proc. of Specifications Software IEEE,
1979, pp. 58-67.

Basili, V. and J. Musa. (1991). “The Future Engineering of Soft-
ware: A Management Perspective,” ‘ Computer, IEEE, Vol.24.
No.9, September 1991.

Cha, S. (1986). “A Recovery Block Model and its Analysis.”
Proc. Fifth IFAC Workshop on o safety of Computer Control
Systems (SAFECOMP 1986), Oxford:Press, Pp 11-26.

Dunn, R, and R. Ullman (1982). Quality Assurance for Com-
puter Software, McGraw-Hill.

Ferdinand, Arthur (1993). Systems Software and Quality Engi-
neering. Van Nostrand Reinhold.

Gantenbein, r., Shin, S. and Wang, Z. (1991). “Software Fault Tol-
erance in a Distributed Real-Time Control System.’ Proc. of
4th ISMM/IASTED International Conf. on Parallel and Dis-
tributed Computing and Systems. Washington D.C. Oct., 1991,
pp 61-64.

Huff, C. and T. Finholt (1994). Social Issues in Computing: Put-
ting Computing in its Place. McGraw-Hill.

Johnson, D. (1995). Computer Ethics. Prentice-Hall.
Johnson, D. and H. Nissenbaum (1995). Computers, Ethics, and

Social Values. Prentice-Hall.
Lee, L. (1992). “Computer Out of Control”. Byte, Feb. 1992, P.

344.
 Leveson, N. (1987). “Building Safe Software,” Software Reliabil-

ity: Achievement and Assessments (B. Littlewood, editor).
Oxford: Beackwell Scientific Publications, pp 1-18.

Musa, J.D.. A. Iannino, and K. Okumoto (1987). Engineering and
Managing Software with Reliability Measures, McGraw-Hill,
1987.

Nelson, S. (I989). “ ‘Making the Business Case for CASE Tech-
nology” Mainframe Update.

Oz, Frank (1994). Ethics for the Information Age. B&E Tech.
Pfleeger, Charles (1989). Security in Computing. Prentice-Hall,

1989.
Pressman, Roger (1987). Software Engineering, McGrawHill, 1987.
Shin, S. and Alishiri. Z. (1994). “CASE Tools Comparisons”.

Proceedings of the Association of Management.
Shin, S., Salehnia, A. and Cong, B. (1993). “Implementation of

Software Fault Tolerant Systems, “ Proceedings of 1993 Inter-
national IRMA Conference. Pp. 466.

Summerville, I. (1989). Software Engineering. Reading, MA:
Addison-Wesley.

Wood, A.T. et al. (1996). “How We Profess: The Ethical Systems
Analyst.” Communication of the ACM, March 1996, Vol. 39,
No. 3, pp 69-77.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/ethical-issues-software-engineering-

revisited/31621

Related Content

Secure Mechanisms for Key Shares in Cloud Computing
Amar Buchadeand Rajesh Ingle (2018). International Journal of Rough Sets and Data Analysis (pp. 21-41).

www.irma-international.org/article/secure-mechanisms-for-key-shares-in-cloud-computing/206875

Sentiment Classification of Social Network Text Based on AT-BiLSTM Model in a Big Data

Environment
Jinjun Liu (2023). International Journal of Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/sentiment-classification-of-social-network-text-based-on-at-bilstm-model-in-a-big-data-

environment/324808

Theory Development in Information Systems Research Using Structural Equation Modeling:

Evaluation and Recommendations
Nicholas Robertsand Varun Grover (2009). Handbook of Research on Contemporary Theoretical Models in

Information Systems (pp. 77-94).

www.irma-international.org/chapter/theory-development-information-systems-research/35825

Novel Methods to Design Low-Complexity Digital Finite Impulse Response (FIR) Filters
David Ernesto Troncoso Romeroand Gordana Jovanovic Dolecek (2018). Encyclopedia of Information

Science and Technology, Fourth Edition (pp. 6234-6244).

www.irma-international.org/chapter/novel-methods-to-design-low-complexity-digital-finite-impulse-response-fir-

filters/184321

Technology and the Theory of Apocalypse
Maximiliano Emanuel Korstanje (2021). Encyclopedia of Information Science and Technology, Fifth Edition

(pp. 1638-1647).

www.irma-international.org/chapter/technology-and-the-theory-of-apocalypse/260294

http://www.igi-global.com/proceeding-paper/ethical-issues-software-engineering-revisited/31621
http://www.igi-global.com/proceeding-paper/ethical-issues-software-engineering-revisited/31621
http://www.irma-international.org/article/secure-mechanisms-for-key-shares-in-cloud-computing/206875
http://www.irma-international.org/article/sentiment-classification-of-social-network-text-based-on-at-bilstm-model-in-a-big-data-environment/324808
http://www.irma-international.org/article/sentiment-classification-of-social-network-text-based-on-at-bilstm-model-in-a-big-data-environment/324808
http://www.irma-international.org/chapter/theory-development-information-systems-research/35825
http://www.irma-international.org/chapter/novel-methods-to-design-low-complexity-digital-finite-impulse-response-fir-filters/184321
http://www.irma-international.org/chapter/novel-methods-to-design-low-complexity-digital-finite-impulse-response-fir-filters/184321
http://www.irma-international.org/chapter/technology-and-the-theory-of-apocalypse/260294

