
84 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
The goal of this paper is to highlight differences identified between three Knowledge Areas or chapters of the Guide to the Software
Engineering Body of Knowledge and the Rational Unified Process. The differences identified are of two types: terminology differences
and topics that can only be found in one or other of the compared documents. The paper shows that the two documents are quite
consistent with regard to these types of differences for the Knowledge Areas considered.

A Comparative Analysis of Three Knowledge
Areas of the Guide to the Software

Engineering Body of Knowledge with
the Rational Unified Process®

Michel Brouillette and Pierre Bourque
École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, Canada, H3C 1K3

Tel: 514 396-8623, Fax: 514 396-8684, m_broue@hotmail.com, pbourque@ele.etsmtl.ca.

INTRODUCTION
This paper reports on the findings of the comparative analysis of

three Knowledge Areas of the Guide to the Software Engineering Body
of Knowledge (SWEBOK) [1] and the Rational Unified Process (RUP®,
version 2001.03.00.23) [2]. The three Knowledge Areas compared
are software requirements, software testing and software configuration
management.

The goal of this paper is to highlight differences identified be-
tween these three Knowledge Areas or chapters of the Guide to the
SWEBOK and the RUP. The differences identified are of two types:
terminology differences and topics that can only be found in one or
other of the compared documents.

GUIDE TO THE SOFTWARE ENGINEERING
BODY OF KNOWLEDGE (SWEBOK)

The Guide to the SWEBOK project is an initiative of the IEEE
Computer Society, and has the support of many public and private
organizations. The purpose of the project is to build a consensus on
the core body of knowledge of software engineering. Articulating a
body of knowledge is an essential step toward recognition of software
engineering as a profession because it represents a broad consensus on
the content of the discipline.

The topics included in the Guide to the SWEBOK are deemed to
be generally accepted and are grouped into the following Knowledge
Areas:
� Software requirements;
� Software design;
� Software construction;
� Software testing;
� Software maintenance;
� Software configuration management;
� Software engineering management;
� Software engineering process;
� Software engineering tools and methods;
� Software quality.

RATIONAL UNIFIED PROCESS (RUP)
The Rational Unified Process (RUP) is a well-known and widely

commercialized software engineering process description. The goal of
RUP is to ensure the production of high-quality software which meets
the needs of its end-users, within a predictable schedule and budget.

The RUP is based on the concept of software best practices. The
best practices on which the RUP is built are the following:
1. Develop iteratively;
2. Manage requirements;
3. Use component architecture;
4. Model visually (UML);
5. Continuously verify quality;
6. Control change.

COMMON VIEWPOINT
Even though the objectives of the Guide to the SWEBOK and of

the RUP are different, the concepts of best practice and generally
accepted knowledge share many common elements (see definitions in
Table 1).

SWEBOK - Generally Accepted
Knowledge

RUP - Software Best Practices

"Generally accepted" means that
the knowledge and practices
described are applicable to most
projects most of the time, and that
there is widespread consensus
about their value and usefulness.
"Generally accepted" does not
mean that the knowledge and
practices described are or should
be applied uniformly on all
projects; the project management
team is always responsible for
determining what is appropriate
for any given project.

AND

"Knowledge" is defined as what
is to be included in the study
material of a software engineer
licensing exam that a graduate
would pass after completing four
years of work experience.

"Best practices" are commercially
proven approaches to software
development which, when used in
combination, strike at the root
causes of software development
problems. They are �best practices�
not so much because you can
precisely quantify their value, but
rather because they are commonly
used in industry by successful
organizations.

Table 1: Definition of generally accepted knowledge and software
best practices

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4123
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 85

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

The definitions of generally accepted knowledge and software
best practices share many commonalities. Notably, the decision on
whether or not a topic is deemed to be generally accepted or a practice
a �best practice� is not based on formal rules, it is rather a subjective
decision based on the acceptance of the practice or knowledge topic.
The two definitions emphasize broad usage or wide applicability. As
well, both documents can be tailored to specific needs.

5 SUMMARY OF FINDINGS FOR
SOFTWARE REQUIREMENTS

This knowledge area is concerned with the acquisition, analysis,
specification, validation and management of software requirements.
The RUP incorporates all these aspects. The Guide to the SWEBOK
uses the term �requirements engineering� to describe the systematic
handling of requirements. The RUP defines the systematic handling of
requirements as requirements management. Requirements manage-
ment in the RUP also provides the capability to establish and maintain
agreement between the customer and the project team on the changing
requirements of the system.

The Guide to the SWEBOK and the RUP have an equivalent
definition of a requirement. The glossary of the RUP defines a re-
quirement as a condition or capability to which a system must con-
form; either derived directly from user needs, or stated in a contract,
standard, specification or other formally imposed document. The
Guide to the SWEBOK defines a requirement as a property which must
be exhibited in order to solve some real-world problem. The Guide to
the SWEBOK states that requirements vary in intent and in the kind of
properties they represent, and that a distinction can be drawn between
product parameters and process parameters. The RUP makes no men-
tion of process parameters, but identifies the two types of product
parameters, functional requirements and non-functional requirements,
which are also identified in the Guide to the SWEBOK. The Guide to
the SWEBOK states that an essential property of all requirements is
that they be verifiable; there is no such recommendation in the RUP.
At most, the RUP states that all verifiable requirements should be
tested, hence implicitly admitting that some requirements may not be
verifiable.

The Guide to the SWEBOK states that eliciting stakeholder re-
quirements is rarely easy and that the requirements engineer has to
learn a range of techniques to help people articulate how they do their
job and what might help them do their job better. The RUP suggests a
number of such techniques.

The requirements engineer�s job, as described in the Guide to the
SWEBOK, differs from the role of requirements specifier described in
the RUP. In addition to the responsibilities of the requirements speci-
fier, the requirements engineer is also responsible for assessing the
feasibility of the requirements.

The Guide to the SWEBOK states that, when a complete and
coherent set of system requirements emerges from the analysis pro-
cess and the system requirements are then allocated or distributed to
subsystems/components, this is part of the architectural design. The
RUP adopts a similar view.

The Guide to the SWEBOK states that it is almost always imprac-
tical to implement requirements engineering as a linear deterministic
process where system requirements are elicited from stakeholders,
baselined, allocated and handed over to the software development
team. The RUP approach to requirements management maps per-
fectly to this affirmation.

Based on the comparative analysis, two topics have been identi-
fied as candidates for generally accepted knowledge to the Guide to the
SWEBOK development team. These topics are the categorization of
requirements and use-cases. Regarding RUP, differences from the Guide
to the SWEBOK were identified for the following items: prioritization
of requirements in the artifact Supplementary Specifications, require-
ments negotiation, verifiability of all requirements, and follow-up ac-
tions based on reported lessons learned.

SUMMARY OF FINDINGS FOR SOFTWARE
TESTING

In the introduction to this chapter, the Guide to the SWEBOK
mentions that the right attitude towards quality is one of prevention.
It is therefore pointed out that software testing is an activity that
should encompass the whole development process. This is exactly
how testing is presented in the RUP. In fact, test planning is executed
from the first phase or inception phase.

In the Guide to the SWEBOK, it is stated that testing is conducted
in view of a specific test objective. In the RUP, the test objectives are
stated in the artifact named Test Guidelines under Goal of Testing.
The test adequacy criteria are referred to in the RUP, as are the test
completion criteria in the artifact named Test Guidelines. These crite-
ria should answer the question: how much testing is enough for achiev-
ing the stated objective? The test selection criteria of the RUP are
found in the Test Plan in the Requirements for Test and Test Strategy
sections. They answer the question: which test cases should be selected
for achieving the stated objective? For performance testing, this
question is answered in greater detail in the workload analysis docu-
ment.

The Guide to the SWEBOK makes a distinction between measures
which evaluate the thoroughness of the test set and measures which
provide an evaluation of the program being tested. In the RUP, this
distinction is also made. There are two key types of measures: cover-
age and quality. Coverage measures evaluate the thoroughness of the
tests and quality measures evaluate the program being tested in terms
of reliability, stability and performance. The RUP Test workflow
contains all the activities of a test process as described in the Guide to
the SWEBOK.

Two topics have been identified as candidates for generally ac-
cepted knowledge to the Guide to the SWEBOK development team.
These topics are security and documentation testing. Regarding RUP,
differences from the Guide to the SWEBOK were identified for the
following items: definition of a default, test effectiveness/appropri-
ateness, error guessing, mutation testing, random testing and sugges-
tion of code-based techniques other than the decision-to-decision path
test technique.

SUMMARY OF FINDINGS FOR SOFTWARE
CONFIGURATION MANAGEMENT

The Guide to the SWEBOK defines configuration management
as the discipline of identifying the configuration of a system at
distinct points in time for the purposes of systematically control-
ling changes to the configuration and of maintaining the integrity
and traceability of the configuration throughout the system life
cycle. In the RUP, configuration management describes the prod-
uct structure and identifies its constituent configuration items, which
are treated as single versionable entities in the configuration man-
agement process. Configuration management deals with defining
configurations, building and labeling, and collecting versioned arti-
facts into constituent sets and maintaining traceability between
these versions.

Based on the comparative analysis, two topics have been iden-
tified as candidate generally accepted knowledge topics. These
topics are the identification of problems solved by software con-
figuration management and the change history of a software con-
figuration item. In the case of RUP, differences from the Guide to
the SWEBOK were found for the following items: special require-
ments from the customer concerning the software configuration
management process, software configuration management require-
ments from external regulatory bodies, the levels of baselines, ac-
cess control to the project repository, deviations and waivers from
the software configuration management process, and the purpose
of the physical configuration audit versus the purpose given in the
Guide to the SWEBOK.

86 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

SUMMARY AND FUTURE STEPS
The paper shows that, for these Knowledge Areas at least, the

two documents are quite consistent. Further work is necessary and is
now under way to complete the comparative analysis for all ten Knowl-
edge Areas of the Guide to the SWEBOK. Both development teams
must now also consider the differences put forward by the comparative
analysis. Other comparative analyses similar to the one described in
this paper are also planned for the Guide to the SWEBOK, notably
with software engineering process improvement models and assess-
ment methods.

ACKNOWLEDGMENTS
We thank Rational Software and especially Philippe Kruchten

for their support of this project.

REFERENCES
[1]Abran, A., Moore, J. W., Bourque, P., Dupuis, R., Tripp, L. (2001).

Guide to the Software Engineering Body of Knowledge Trial version
0.95 http://www.swebok.org/documents/ironman/Guide to the
SWEBOK - Ironman Version 095.PDF.

[2]Kruchten, P., (2000). The Rational Unified Process: An Introduction
(2nd ed.). Reading: Addison Wesley Longman.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/comparative-analysis-three-

knowledge-areas/31722

Related Content

Steganography Using Biometrics
Manashee Kalitaand Swanirbhar Majumder (2018). Encyclopedia of Information Science and Technology,

Fourth Edition (pp. 4985-5003).

www.irma-international.org/chapter/steganography-using-biometrics/184201

Viewpoints on Business Process Models
Giorgio Bruno (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 788-798).

www.irma-international.org/chapter/viewpoints-on-business-process-models/183790

Open Source Software and the Digital Divide
Heidi L. Schnackenberg, Edwin S. Vegaand Michael J. Heymann (2015). Encyclopedia of Information

Science and Technology, Third Edition (pp. 4653-4660).

www.irma-international.org/chapter/open-source-software-and-the-digital-divide/112907

Overview of Dooyeweerd's Philosophy
Andrew Basden (2008). Philosophical Frameworks for Understanding Information Systems (pp. 32-61).

www.irma-international.org/chapter/overview-dooyeweerd-philosophy/28080

The Infusion of Technology Within the Classroom Facilitates Students' Autonomy in Their

Learning
Fariel Mohanand Garry Soomarah (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 2532-2544).

www.irma-international.org/chapter/the-infusion-of-technology-within-the-classroom-facilitates-students-autonomy-in-

their-learning/183965

http://www.igi-global.com/proceeding-paper/comparative-analysis-three-knowledge-areas/31722
http://www.igi-global.com/proceeding-paper/comparative-analysis-three-knowledge-areas/31722
http://www.irma-international.org/chapter/steganography-using-biometrics/184201
http://www.irma-international.org/chapter/viewpoints-on-business-process-models/183790
http://www.irma-international.org/chapter/open-source-software-and-the-digital-divide/112907
http://www.irma-international.org/chapter/overview-dooyeweerd-philosophy/28080
http://www.irma-international.org/chapter/the-infusion-of-technology-within-the-classroom-facilitates-students-autonomy-in-their-learning/183965
http://www.irma-international.org/chapter/the-infusion-of-technology-within-the-classroom-facilitates-students-autonomy-in-their-learning/183965

