
Issues and Trends of IT Management in Contemporary Organizations 87

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Intelligent Service Discovery
Robert Bram and Jana Dospisil

School of Network Computing, Monash University, Australia, {Rob.Bram, Jana.Dospisil}@infotech.monash.edu.au

ABSTRACT
The claim of improved efficiency and reliability of networking technology provides for a framework of service discovery where clients
connect to services over the network based on a comparison of the client�s requirements with the advertised capabilities of those services.
Basic service discovery in Jini involves an exact pattern match between attributes in the clients requirement description and the services�
capability description. Advanced service discovery should allow for comparative pattern matching using attributes that measure aspects
of a service and offer the client a far more refined power to choose the best services for them. This paper proposes a framework of
intelligent service discovery using a generic constraint satisfaction problem solving architecture that uses comparative pattern matching
and allows search algorithms to be used as library components.

INTRODUCTION
The availability, speed and reliability of networking technology

validates a service discovery framework where clients connect to ser-
vices over the network based on the advertised capability descriptions
[9] of those services. Services in this framework are interfaces to
devices, applications, objects or resources that the client needs.

The key challenge for such systems is to enable clients to locate
the service that best suits their needs, where �best� will be defined by
the client [10] using infrastructure provided by the framework�s imple-
mentation. Example definitions may include type of service or quality
of service such as cost, speed or accuracy of results. The client�s
requirements must be compared with the advertised capability descrip-
tions of the services to find the best match [9].

Service discovery frameworks may be classified according to lo-
cality (where the comparison takes place): at the client site, at the
server site, or a third party search service called a lookup. Lookup is
typically a directory based process of locating (looking up) a specific
service or activating an agent capable of doing the job [7]. Each of
these styles has a different profile in terms of network traffic and a
combination of all three is possible [9].

When using a lookup, the client must be able to provide the
lookup process with enough detail for the service to be located. This
detail may be a specific address or identification or it may be data to
form some matching criteria with which the lookup process may search
upon and build a satisfier set [5] from which a service may be selected.

This paper shall begin by outlining how a directory enables ser-
vice discovery and how Jini�s service discovery mechanism utilises
exact pattern matching

This paper begins by showing the basic definition and usage pat-
terns of a directory as they apply to any lookup discovery service and
to Sun�s Jini technology in particular. It shall provide justification for
an intelligent search service using comparative pattern matching and
propose a framework that treats a search as a constraint satisfaction
problem.

INTRODUCING THE DIRECTORY
A directory is any searchable list of references: usually ordered

and thus indexed. Directories may be subdivided into smaller lists or
categories and may even be indexed according to these categories.

The service providers who wish to �sell� their services must
register the services with the directory. The client searches available
directories to find a set of suitable services by comparing their require-
ments with details about each service provided by the directory. The
references registered with the service provides pointer to the service
or a proxy.

Jini: A Java Directory
In a peer-to-peer environment, directories are central reposito-

ries for information. Directory information software can be scalable,

granular and independent of location and able to present and store
meta-data [2].

Jini is a set of Java API�s defining an electronic directory service
designed to list references to other electronic services. There are four
main components to Jini: three actors connected via a network as
illustrated in Figure 1 below.

Service Provider

Lookup Service

Client

An electronice network
connects the actors.

1

2 3
4

The four components in a scenario where Jini
Lookup Service is used.

Figure 1: Components in a Jini Scenario

In Jini terminology, the directory is a lookup service (or service
locator or service registry). The references are proxy objects that
have been registered with the lookup service by the service providers
that created them. The searchers are clients who conduct searches on
the lookup for a set of service objects matching a service template
they created.

The same general patterns are used in Jini to dictate how refer-
ences make their way into the lists and how searchers use the directory.
1. Service providers discover the lookup service,
2. service providers register a service item with the lookup service that

include a service proxy that represents the actual service to the
client and a set of Entry attributes that describe the service in various
ways.

The same pattern defines how clients (searchers) make use of a
lookup service:
1. clients discover the lookup service;
2. clients lookup the service(s) they desire by sending a service tem-

plate that represents search matching criteria. The service template
can include a service id to reference a specific service or it may
include an array of object types that the service object must imple-

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4124
IDEA GROUP PUBLISHING

88 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ment or it may include an array of Entry objects that represent
desired state to be searched for;

3. the lookup service returns a set of proxy objects that satisfy the
search criteria;

4. clients choose which proxy to use, which may or may not involve
further interaction with the service provider.

Exact Pattern Matching
Jini provides a lookup service (Reggie) that allows a client to use

any of three search criteria:
� a ServiceID, guaranteed to be globally unique for each Jini registered

service;
� a set of Class objects - object types matching the required service or

interfaces implemented by the required service; and
� a set of Entry attributes describing the service.

When the client submits a ServiceTemplate to the lookup service,
a search is performed on all three criteria: an exact pattern match will
be performed on the Entry attributes of the ServiceItems in the satis-
fier set formed by the first two criteria.

An attribute in the ServiceTemplate is matched by an attribute in
the ServiceItem if all fields of the attribute that are non null match
exactly their corresponding field in the ServiceItem. This is the exact
pattern match implemented by Jini [4]. It is important to remember
that the attributes are kept serialized even for comparison � the value
of two fields are considered matched if have the same sequence of
bytes according to the Java serialisation scheme [4]. .

This form of pattern matching keeps the mechanism quite simple.
It also means that code need not be deserialised to allow for custom
compare functions [14]. If a client wishes to conduct more advanced
searching, they need to define a ServiceTemplate that will match the
broadest category of services they are interested in and implement an
advanced search on that set.

This scenario does not represent a good separation of concerns:
clients should be free to perform the tasks they are assigned without
having to manage specialised service discovery code that could in-
volve a great deal of calculation to find the correct service, such as a
client searching for the Solution Engine for a Constraint Satisfaction
Problem [12]. This specialised code belongs in a service of its own, for
use by clients in need of the same.

PROPOSED INTELLIGENT SEARCH
SERVICE FRAMEWORK

An intelligent search service should be able to conduct a com-
parative search upon the terms handed to it. For example, the service
could be designed so as to accept a predicate logic expression [5] or
predicate object [6] that could be evaluated to form a satisfier set [5]
for the client to choose from.

When a lookup service is given a ServiceTemplate, it attempts
service discovery on behalf of the client by searching a domain (the
directory) for a solution (the satisfier set). This suggests that searching
for a service could be described as a constraint satisfaction problem. A
constraint satisfaction problem (CSP) is any problem that can [8]:
a) be defined by:

� a set of variables: { }V v v vm= 1 2, ,... ,

� a set of domains that define what values each variable can

 take: { }D d d dm= 1 2, ,....., ,

� a set of constraints that define all relationships between the

 variables: { }C c c cn= 1 2, ,......, ;

b) solved by determining a set of variable-value pairs that satisfy all
constraints (a solution).

Finding a solution to a CSP means finding a set of value assign-
ments for each variable such that all constraints are satisfied. The

basic process is iterative. First select a variable for instantiation, then
select a value and assign it to the variable and determine whether the
assignment is consistent with all of the constraints. If an inconsis-
tency is detected, backtrack; otherwise iterate with the next variable:
this step is controlled by the heuristics of the algorithm, deciding, for
example, what variable is to be considered next and in what order the
set of constraints should be evaluated.

From the above broad description of a constraint satisfaction
problem, it can be seen that any search implemented as a CSP must be
able to model the following elements:

� variables
� domains
� constraints
� heuristics
All search criteria of a Jini ServiceTemplate are variables � they

are object data members of the ServiceTemplate. Java objects or primi-
tives have a primary domain automatically specified by their type.
This suggests that a collection of java objects (and primitives) are by
default a set of matched variables and domains.

Discounting primitives, variables are Java objects that maintain
state and may define a more intricate non-contiguous domain via the
inclusion of a method that outputs the next value in the domain�s
sequence.

Constraints model relationships between two or more variables.
�Cost <= budget� is a simple example that illustrates a simple point: a
constraint, in essence, is a logic expression that evaluates to true or
false. If variables are modelled as Java objects, a constraint�s logic
could be implemented by a method that returns a boolean value and has
access to all variables included in the relationship.

Earlier it was stated that heuristics should be able to control the
order in which constraints are evaluated. If each individual constraint
is modelled as an individual object, the set of all constraints may be
stored in an array and ordered to suit.

The processing of a set of heuristics in between each iteration of
a constraint problem solving exercise involves modifying the order in
which variables are assigned values and constraints are evaluated. The
collections of variables and constraints can be stored in their own
arrays, made available to a Java object encapsulating heuristic logic
which can order the variables and constraints as it sees fit, read for the
next algorithmic iteration.

Intelligent Service Discovery Attributes
A set of intelligent service discovery attributes may be devised to

model variables, domains, constraints and heuristics as Entry objects
that can be included in a standard Jini ServiceTemplate.

interface ISDVariable implements net.jini.core.Entry
{
 public Object variable;
 public String variableName;
 public Object nextValue ();
}

interface ISDConstraint implements net.jini.core.Entry
{
 public boolean checkConstraint (ISDVariable [] attributes);
}

interface ISDHeuristics implements net.jini.core.Entry
{
 public void processHeuristics
 (ISDVariable [] attributes, ISDConstraint [] constraints);
}

Generic Service Discovery Algorithm as a CSP
Objects implementing the interfaces from section 3.1 will con-

tain the logic required to find the best set of services where best is

Issues and Trends of IT Management in Contemporary Organizations 89

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

defined by the client. The task is modelled as a constraint satisfaction
problem and the generic iterative algorithm below shows a solver
acting as a compute engine [15].

BEGIN main
 DO
 ISDHeuristics.processHeuristics (attributes, constraints)
 attributes [n] = attributes [n].nextValue ()
 UNTIL constraintsSatisfied
END main
BEGIN constraintsSatisfied
 boolean result = true
 FOR all ISDConstraint in constraints
 result = result AND constraints [n].checkConstriant (attributes)
 END FOR
END constraintsSatisfied

Different constraint solving algorithms can be handed to the
intelligent search service as different configurations of ISDVariable,
ISDConstraint and ISDHeuristics objects , allowing the client to specify
what strategies or heuristics they wish to have the search [12Error!
Reference source not found.].

When a client is ready to perform lookup on a Jini ServiceRegistrar
(the lookup service�s proxy), they may specify the maximum number
of matches to be received. It should also be possible for

Intelligent Search Service as a new Service
Jini defines a small set of standard attributes in

net.jini.entry.AbstractEntry: Address, Comment, Location, Name,
ServiceInfo, ServiceType or Status. Together, these attributes form the
primary model of Jini�s exact pattern matching during lookup and
effectively describe a style of attributes that act as key words, much as
the html meta keyword tag.

A lookup that services complex and simple searches could end up
slowing delivery time for the simple searches. Instead, the two services
can exist side by side. A client who needs a simple search can use the
Jini lookup service. A client who needs an intelligent search can lookup
the intelligent search service and then use it, saving the Jini lookup
from the extra work.

Intelligent Attributes Measure and Describe
Attributes of a service are by definition descriptive. The standard

set of attributes mentioned in section 0 contain descriptive string
information about a service. Comparative service discovery should
uses descriptive measures of a service: any measurable quality can be
compared with the inequality operators, < and > as well as the equality
operator, =.

Potential candidates for intelligent attributes include:
� size of the service proxy to be downloaded;
� bandwidth of the service provider;
� expected minimum, maximum and median processing time needed

to run service (or maybe a formula for the calculation of expected
processing time);

� queue length for service (see NOTE below);
� cost of the service.

NOTE: using an intelligent service discovery service will un-
doubtedly take longer than ordinary lookup. If attributes are used to
measure highly dynamic values of a service it is important to note that
the value may change by the time the client gets the results.

ServiceTemplate for Simple and Complex Searches
The search service will a receive a ServiceTemplate and discrimi-

nate between �simple� and �complex� attributes based on their type. A
sample ServiceTemplate is shown in Figure 2.

The intelligent search service would perform a standard lookup
to receive a set of services that match the �simple� attributes. It shall
then search that set for the client�s satisfier set that meet the criteria

ServiceTemplate

serviceTypes

serviceID = null

attributeSetTemplates

Printer

ISDVariable

variableName = cost

variable = java.lang.Integer

net.jini.lookup.entry.Name

name = printer

ISDConstraint

checkConstraint {

 if (variable.intValue () > 30)

 return false;

}

ISDHeuristics

Figure 2: Example search object

specified by the ISDVariable, ISDConstraint and ISDHeuristics ob-
jects.

A Generic Framework of Service Discovery
Jini is being used as a test bed for this idea. The application will

provide a search service for other jini services, but there is no reason
why it cannot be designed to facilitate a client connecting directly to
the search service without knowledge of Jini.

The most important aspect is to ensure that a communication
protocol is in place � using either XML or Java objects to contain the
service template and results.. Wrappers could be written for RMI or
SOAP, with the wrapping class incorporating the appropriate trans-
mission protocol as well � Sockets etc.

A client will need to discover the lookup service and then lookup
the search service. The search service proxy would be a remote object
and clients call lookup on it, sending a new search object and receive
the results object containing references to the services found (proxy
objects the search service downloaded from the lookup service).

CONCLUSION AND FUTURE WORK
This paper represents the current state of research still in progress.

A framework of intelligent service discovery has been outlined using a
generic constraint satisfaction problem solving architecture that al-
lows different algorithms to be used as library components.

The addition of an intelligent search service would undoubtedly
increase the complexity of an already complex notion. The benefits

90 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 3: Service discovery with a search service

of such a search service are that clients in a large system would have
the power to select the service that is right for them based on at-
tributes that describe measurable aspects of the service rather than just
describe the service (i.e. the basic Jini attributes act more as keywords
for a service). This power to discriminate is useful in any scenario
where there is a large number of services with similar attributes. An
example is a market place driven by competition for client patronage
or a pool of Solvers that all solve Constraint Satisfaction Problems but
with different, specialist, algorithms.

The client must be sure such a service is worth their while; a
search service would undoubtedly increase the time it takes to link the
client to a service, so it must be proportionately important to the
client to find the right service.

In addition to increasing the client�s time to connect to a search
service, there is the possibility that bottlenecks will hamper the per-
formance of any central directory service However, an intelligent
search service splits the work of service discovery into two tiers:
simple discovery and complex discovery. The search service, being
specialized, will not receive lookup requests that Jini�s native lookup
service can handle.

Another load balancing issue has to do with dynamic attributes
and the fact that service discovery is not an atomic action. The time
delay in using a search service could mean that a critical variable used
to make a decision based on its current value could have quite a differ-
ent value when the client finally connects to the service. This warning
applies to any dynamic attribute. One method of dealing with dynamic
or volatile attributes (whose values change often) is to include a field
rating the volatility of an attribute. Highly volatile attributes might be
considered with a lower priority than non volatile attributes. These
functions can be relegated to the reasoning implemented by a
ISDHeuristics object.

Backtracking and constraint propagation are the two main cat-
egories of algorithms used to solve constraint satisfaction problems
[8]. For testing purposes a highly simplistic algorithm will be imple-
mented, but an important question that needs to be answered by this
investigation is: will the framework outlined in this paper be capable of
allowing a wide variety of established CSP algorithms to run?

Future work will involve completing the test bed and developing a
suite of standard ISDVariable, ISDConstraint and ISDHeuristics classes to
allow a variety of search algorithms to be used �out of the box� � without
the client having to get their hands dirty except for filling in a few values.
The intelligent search service will be evaluated according to how success-

fully it discovers the best services for a client as defined by the
collection of ISDConstraint and ISDHeuristics objects.

REFERENCES
Definition of HAVi appears here:http://whatis.techtarget.com/

definition/0,,sid9_gci748239,00.htmlURL last accessed: 29
September 2001.More information can be found
here:www.havi.orgURL last accessed Tuesday 2 October 2001.

Directory Services Markup Language by Bowstreethttp://
www.dsml.org/about.htmlURL last accessed Wednesday 3
October 2001.

Edwards, K. W. Core Jini, Second Edition. Prentice Hall, PTR,
Upper Saddle River, 2001. Page 270

Edwards, K. W. Core Jini, Second Edition. Prentice Hall, PTR,
Upper Saddle River, 2001. Page 248.

Hughes E., Mc Cormack D., Barbeau M. and Bordeleau F. Service
Recommendation using SLP (Service Location Protocol).
Written for the IEEE International Conference on Tele-
communications (ICT), Bucharest, June 2001.http://
www.scs.carleton.ca/~barbeau/Publications/2001/ICT/
hughesmccormack.pdf. URL last accessed Monday, 1 Octo-
ber 2001.

IBM � SLAPHAPIhttp://www.dsml.org/dsml_in_action/
ibm.htmlURL last accessed Wednesday 3 October 2001.IBM
- SLAPHAPI (Standalone LDAP HTTP API) is a general-
ized high-level application programming interface for ac-
cessing LDAP directories via HTTP requests � part of the
directory services markup language (see [2]).

McGrath E. R. Discovery and Its Discontents: Discovery Proto-
cols for Ubiquitous Computing. Presented at Center for Ex-
cellence in Space Data and Information Science, NASA
Goddard Space Flight Center. April 5, 2000.http://
www.ncsa.uiuc.edu/People/mcgrath/Discovery/dp.htmlURL

last accessed: Monday, 1 October 2001
P. Crescenzi, G. Rossi. On the Hamming Distance of Constraint Satis-

faction Problems. Dipartimento di Sistemi ed Informatica, Università
di Firenze. 25 January 2000. http://gdn.dsi.unifi.it/~rossig/Papers/
TCS1/tcs.html URL last accessed Wednesday 3 October 2001.

Pascoe R. Dynamic networking requires comprehensive service discov-
ery. Serverworld�s HP Chronicle Archives: October 2000 Issue.http:/
/ w w w. s e r v e r w o r l d m a g a z i n e . c o m / h p c h r o n i c l e / 2 0 0 0 / 1 0 /
discovery.shtml.URL last accessed Monday 1 October, 2001.

Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,
and Randy H. Katz. Secure Service Discovery Service: An Architec-
ture for a Secure Service Discovery Service. For Mobicom �999
Seattle, Washington USA.http://iceberg.cs.berkeley.edu/papers/
Czerwin-Mobicom99/sds-mobicom.pdfURL last accessed: Monday,
1 October 2001

Sun Java site for downloading the Jini API�s.http://www.sun.com/soft-
ware/communitysource/jini/download.htmlURL last accessed Wednes-
day 3 October 2001.

Tsang E., Kwan A. Mapping Constraint Satisfaction Problems to Algo-
rithms and Heuristics. For the Department of Computer Science,
University of Essex. December 15, 1993.

Venners B. Objects, the Network, and Jini. First published under the
name Jini: New Technology for a Networked World in JavaWorld, a
division of Web Publishing, Inc., June 1999.http://www.artima.com/
jini/jiniology/intro.htmlLast accessed Monday October 1, 2001.

Venners, B. Finding Services with the Jini Lookup Service - Discover the
power and limitations of the ServiceRegistrar interface. First pub-
lished under the name �Finding services with the Jini lookup service�
in JavaWorld, a division of Web Publishing, Inc., February 2000.http:/
/www.javaworld.com/javaworld/jw-02-2000/jw-02-jiniology.htmlURL
last accessed Tuesday 2 October 2001.

Sun�s Java tutorial for RMI outlines a Compute Engine.http://
java.sun.com/docs/books/tutorial/rmi/URL last accessed Thursday 4
October 2001.

Client Service

Search Service

Lookup Service

Service

Service

Service

Solver

Solver

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/intelligent-service-discovery/31723

Related Content

Web Archiving
Trevor Alvord (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7684-7692).

www.irma-international.org/chapter/web-archiving/112471

Ethical Concerns in Usability Research Involving Children
Kirsten Ellis, Marian Quigleyand Mark Power (2010). Breakthrough Discoveries in Information Technology

Research: Advancing Trends (pp. 151-159).

www.irma-international.org/chapter/ethical-concerns-usability-research-involving/39577

A Comparison of Data Exchange Mechanisms for Real-Time Communication
Mohit Chawla, Siba Mishra, Kriti Singhand Chiranjeev Kumar (2017). International Journal of Rough Sets

and Data Analysis (pp. 66-81).

www.irma-international.org/article/a-comparison-of-data-exchange-mechanisms-for-real-time-communication/186859

Technology-Enhanced Learning: Good Educational Practices
David Fonseca, Ricardo Torres Kompen, Emiliano Labradorand Eva Villegas (2018). Global Implications of

Emerging Technology Trends (pp. 93-114).

www.irma-international.org/chapter/technology-enhanced-learning/195824

Fault Analysis Method of Active Distribution Network Under Cloud Edge Architecture
Bo Dong, Ting-jin Sha, Hou-ying Song, Hou-kai Zhaoand Jian Shang (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-16).

www.irma-international.org/article/fault-analysis-method-of-active-distribution-network-under-cloud-edge-

architecture/321738

http://www.igi-global.com/proceeding-paper/intelligent-service-discovery/31723
http://www.irma-international.org/chapter/web-archiving/112471
http://www.irma-international.org/chapter/ethical-concerns-usability-research-involving/39577
http://www.irma-international.org/article/a-comparison-of-data-exchange-mechanisms-for-real-time-communication/186859
http://www.irma-international.org/chapter/technology-enhanced-learning/195824
http://www.irma-international.org/article/fault-analysis-method-of-active-distribution-network-under-cloud-edge-architecture/321738
http://www.irma-international.org/article/fault-analysis-method-of-active-distribution-network-under-cloud-edge-architecture/321738

