
94 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

OVERVIEW
The UML (Unified Modeling language) has become a standard in

design of object oriented computer systems. UML provides for the use
of stereotypes to extend the utility of its base capabilities. In the
design and construction of business systems, we have found some par-
ticularly useful stereotypes, and this paper defines and illustrates these.

UML STEROTYPES
�Stereotypes are the core extension mechanism of UML. If you

find that you need a modeling construct that isn�t in the UML but it is
similar to something that is, you treat your construct as a stereotype.�
[Fowler, 2000] The stereotype is a semantic added to an existing
model element and diagrammatically it consists of the stereotype
name inside of guillemots (a.k.a. chevrons) within the selected model
element. The guillemot looks like a double angle bracket (<< � >>),
but it is a single character in extended font libraries. [Brown, 2002]
The UML defines about 40 of these stereotypes such as �<<becomes>>�,
�<<include>>�, and �<<signal>�. [Scott, 2001] However, these 40
standard stereotypes do not add the meaning necessary for automatic
code generation in a UML CASE tool.

One common general use of the stereotype is for a metaclass. A
metaclass is a class whose instances are classes, and these are typically
used in systems in which one needs to declare classes at run time.
[Eriksson, 1998] A similar general use is for powertypes. A powertype
is an object type (class) whose instances are subtypes of another object
type. Figure 1 shows an example of the use of stereotypes for
powertypes. [Martin, 1998]

Use of UML Stereotypes in Business Models
Daniel Brandon, Jr.

Christian Brothers University, Information Technology Management Department
650 East Parkway South, Memphis, TN, Tel: 901-321-3615, Fax: 901-321-3566, dbrandon@cbu.edu

Figure 1: An example use of stereotypes for powertypes

USER DEFINED STEREOTYPES FOR
BUSINESS SYSTEMS

In the design of business systems we have found some stereotypes
that were useful, and two stereotypes that are extremely useful. When
defining stereotypes it is necessary to describe: [Eriksson, 1998]:
1. On which [UML] element the user defined stereotype should be based
2. The new semantics the stereotype adds or refines
3. One or more examples of how to implement the user-defined stereo-

type
A common use of stereotypes in business systems is for interfaces

as found in Java or CORBA; this is shown in Figure 2. An interface
typically has public functionality but not data (unless holding data for
global constants). The class model element has been modified with the
�<<interface>>� notation. This is commonly used for UML CASE

Figure 2: A common use of stereotypes in business systems

products that do not have separate interface symbols or where these
symbols do not allow data (i.e. global constants).

Still another common stereotype usage in business systems is to
clarify or extend a relationship. Figure 3 shows a stereotype called �his-
tory� which implies a �many� cardinality for history purposes, that is,
each Person has zero or one current employers but may have many
employers in terms of the employee�s history. It may imply some com-
mon functionality upon code generation such as [Fowler, 2000]:

Company Employee::getCompany(Date);

CODE WRITING AND GENERATION
Most modern UML CASE (Computer Aided Software Engineer-

ing) products can generate �skeleton� classes from the UML class
diagrams and possibly other diagrams. For business systems design, we
need to write the code for our classes (usually implemented in Java or
C++) based on both the Structural Model (UML Class Diagram) and the
Dynamic Model (UML Activity Diagram). This process is shown in
Figure 4. It is very important that consistency between the two dia-
grams is achieved.

Figure 3: �History� stereotype

Figure 4: Code example

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4126
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 95

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Many such CASE products allow the user to write their own �class
generation scripts� in some proprietary scripting language or in a
general scripting language (i.e. Python). With user defined stereo-
types, the user can modify the class generation script code to use their
stereotypes as needed.

RELATIONSHIP OBJECT TYPES
Often simple relationships (such as basic associations) need to be

modeled as object types because these relationships have data content
and/or functionality. Figure 5 shows a simple association between two
object types representing the relationship �current marriage�. If we
need to maintain an attribute on each marriage (such as rating), then
we can more effectively represent the relationship as an object type as
shown in Figure 6. Here we use the �relationship� stereotype to indi-
cate that this object type is a relationship; and the code generation can
use a more simplified class representation. Others authors have sug-
gested other notation for relationship object types such as �placehold-
ers� [Martin, 1998], and UML suggests using the dotted line from a
standard object type (class) to the relationship line. But implementing
these other diagramming techniques in code generation is difficult and
has ambiguity problems.

Figure 5: �Current marriage� association

Figure 6: �Current marriage� object type

ACTIVITY DIAGRAMS
A UML Activity Diagram is a state diagram in which most of the

states are action states and most of the transitions are triggered by the
completion of these action states. This is the case in most models of
business systems. Activity Diagrams identify action states, which we
call operations [Martin, 1998], and the cause and effect between op-
erations. Each operation needs to belong to an object type, at least for
a C++ or Java implementation. Operations may be nested, and at some
point in the design the operations need to be defined in terms of
methods. The methods are the processing specifications for an opera-
tion and can be so specified in lower lever activity diagrams, pseudo
code, or language specific code. Note that the term �methods� may
cause some confusion here since in programming terminology, a method
is a function defined within a class and it is invoked upon an object
(unless it is a static method).

Current Drawing Methodology
Figure 7 shows a typical UML activity diagram for a simple

ordering process. The operations are represented in the ovals and the
arrows show the cause and effect scenario or the �triggers�. In this
diagram there are two �fork/join� model elements, and the use of
�conditional branch states� is also common. Each of the operations
must be associated with a particular object type. The standard way to
do that in this UML type diagram is to use �swimlanes�, and these are
the vertical lines shown in Figure 7.

There are two problems with the standard representation as shown
in Figure 7. The first problem is that as the system gets more complex
(more object types and operations), it is very difficult to draw in
swimlanes. The second problem is that code generation is very diffi-
cult in UML CASE products since you have to scan the geometry of
the drawing to find out which operations lay in which swimlanes.

Figure 7: �Swimlanes�

Figure 8: �Operation owner� stereotype

96 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 9: UML class diagram

Figure 10: Registration process

Figure 11: Breakdown of the registration process

Figure 12: Processing specifications

Figure 13: Processing specifications

Stereotype Usage for Operations
Our solution to the above problems with standard UML activity

diagrams is to use a stereotype for the operation element to indicate
the object type (class) owning that operation. Figure 8 shows the same
systems as Figure 7 drawn with the �operation owner� stereotype.

Model Consistency
A final business system design will involve several UML diagram

types. For example business systems typically have a static Structural
Diagram (Class Diagram) and a Dynamic Diagram (UML Activity
Diagram). These diagrams must be consistent with one another, in
particular:
1. The object types (shown with the operation stereotype notation)

that contain the operations in activity diagram must be included on
the structural diagram.

2. The operations shown in the activity diagram (along with the object
types identified with the stereotype notation) must be included as
operations in the same object type on the structural diagram.

EXAMPLE USAGE
This section describes an example of the use of our �operation

owner� stereotype on a simple problem. The UML CASE product used
was Object Domain Version 2.5 [Object Domain], and the example was
implemented in C++.

Design
The business system being modeled is the process of registering

students for classes. In this simple model, we have just two object
types: Student and Class. The static structure diagram (UML Class
Diagram) is shown in Figure 9. Figure 10 shows the activity diagram
for the registration process (which is an operation in the Student
object type). Figure 11 is the breakdown of that registration operation
into other operations, again using our �operation owner� stereotypes.

To express the processing specifications of each operation (the
�methods�), we can use pseudo code, specific language code, or lower
level activity diagrams. Figures 12 and 13 show processing specifica-
tions represented in activity diagrams. Here our �operation owner�
stereotype notation uses the object type name and operation name
(i.e. Class::addStudent) since the information within the oval is a pro-
cess description not an operation name. At code generation, the infor-
mation within these ovals is just added to the code for the operation as
a comment (i.e. //add student to class list).

Implementation
An implementation of these diagrams (in C++) is shown in Fig-

ures 14 through 17. Figure 14 shows the class definitions. Figure 15
shows the implementation of the operations (C++ functions) of the

Figure 14: Class definitions
#include <iostream.h>
#include <string.h>

#define MAXSTUD 25
#define MAXCLASS 5

enum boolean {FALSE, TRUE};
class Class;

class Student
{
 private:

long id;
char name [30];
int classLoad;
Class *myClasses[MAXCLASS];
void addClass(Class *c);

 public:
Student (long, char*);
char * getName();
boolean registerClass(Class *);

};

class Class
{
 private:

int id;
char title[20];
int max;
int enrolled;
Student *students[MAXSTUD];

 public:
Class (int, char *, int);
boolean checkFull();
void addStudent(Student *);

};

Issues and Trends of IT Management in Contemporary Organizations 97

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Figure 15: Implementation of the operations of the student class Figure 16: Implementation of the operations of the Class class
Student::Student (long i, char * s)
{

id = i;
strcpy(name, s);
classLoad = 0;
for (int j = 0; j < MAXCLASS; j++)

myClasses[j] = NULL;
cout << �New student created: � << s << endl;
return;

}

char * Student::getName()
{

return name;
}

boolean Student::registerClass(Class *c)
{

if (classLoad == (MAXCLASS - 1))
{

cout << �No more classes for this student� << endl;
return FALSE;

}
if (c->checkFull() == TRUE)
{

cout << �Class is full� << endl;
return FALSE;

}
c->addStudent(this);
addClass(c);
return TRUE;

}

void Student::addClass(Class *c)
{

myClasses[classLoad] = c;
classLoad++;
return;

}

Class::Class(int i, char * s, int m)
{

id = i;
strcpy(title, s);
max = m;
enrolled = 0;
for (int j = 0; j < MAXSTUD; j++)

students[j] = NULL;
cout << �New class created: � << s << endl;
return;

}

boolean Class::checkFull()
{

if (enrolled == max)
return TRUE;

else
return FALSE;

}

void Class::addStudent(Student *s)
{

students[enrolled] = s;
enrolled++;
cout << �Student: � << s->getName();
cout << � enrolled in � << title << endl;

{

/* ��� Main Function ��� */
int main()
{

// Create a student
Student s1 (123456789, �John Doe�);

// Create a class
Class c1 (352, �Object Oriented�, 20);

// Register the student in the class
s1.registerClass(&c1);

return 0;
}

Figure 17: Sample �driver� or C++ main function

Student class. Figure 16 shows the implementation of the operations
(C++ functions) of the Class class. Figure 17 is a sample �driver� or
C++ main function.

CONCLUSION
UML stereotypes can be very useful in designing business sys-

tems. The use of a �relationship� stereotype is helpful in static struc-
tural models (UML Class Diagrams) and the use of an �operation
owner� stereotype is most helpful in dynamic models (UML Activity
Diagrams). These stereotypes aid in both the design/drawing phase and
in the implementation (coding) phase of the overall system construc-
tion.

REFERENCES
Brown, David. An Introduction to Object-Oriented Analysis, John Wiley

& Sons, 2002
Erikson, Hans-Erik and Penker, Magnus. UML Toolkit, John Wiley &

Sons, 1998
Fowler, Martin and Kendall, Scott. UML Distilled, Addison-Wesley,

2000
Martin, James and Odell, James. Object Oriented Methods � A Founda-

tion (UML Edition), Prentice Hall, 1998

Object Domain, Object Domain Systems Inc., [www.objectdomain.com],
2001

Scott, Kendall. UML Explained, Addison-Wesley, 2001

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/use-uml-stereotypes-business-

models/31725

Related Content

Hybrid TRS-PSO Clustering Approach for Web2.0 Social Tagging System
Hannah Inbarani H, Selva Kumar S, Ahmad Taher Azarand Aboul Ella Hassanien (2015). International

Journal of Rough Sets and Data Analysis (pp. 22-37).

www.irma-international.org/article/hybrid-trs-pso-clustering-approach-for-web20-social-tagging-system/122777

Cost-Effective 3D Stereo Visualization for Creative Learning
R. S. Kamathand R. K. Kamat (2018). Encyclopedia of Information Science and Technology, Fourth Edition

(pp. 2411-2420).

www.irma-international.org/chapter/cost-effective-3d-stereo-visualization-for-creative-learning/183954

An Evidence-Based Health Information System Theory
Daniel Carbone (2009). Handbook of Research on Contemporary Theoretical Models in Information

Systems (pp. 95-111).

www.irma-international.org/chapter/evidence-based-health-information-system/35826

Integrated Digital Health Systems Design: A Service-Oriented Soft Systems Methodology
Wullianallur Raghupathiand Amjad Umar (2009). International Journal of Information Technologies and

Systems Approach (pp. 15-33).

www.irma-international.org/article/integrated-digital-health-systems-design/4024

Towards Higher Software Quality in Very Small Entities: ISO/IEC 29110 Software Basic Profile

Mapping to Testing Standards
Alena Buchalcevova (2021). International Journal of Information Technologies and Systems Approach (pp.

79-96).

www.irma-international.org/article/towards-higher-software-quality-in-very-small-entities/272760

http://www.igi-global.com/proceeding-paper/use-uml-stereotypes-business-models/31725
http://www.igi-global.com/proceeding-paper/use-uml-stereotypes-business-models/31725
http://www.irma-international.org/article/hybrid-trs-pso-clustering-approach-for-web20-social-tagging-system/122777
http://www.irma-international.org/chapter/cost-effective-3d-stereo-visualization-for-creative-learning/183954
http://www.irma-international.org/chapter/evidence-based-health-information-system/35826
http://www.irma-international.org/article/integrated-digital-health-systems-design/4024
http://www.irma-international.org/article/towards-higher-software-quality-in-very-small-entities/272760

