
A

1261

Copyright © 2023, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Section: Data Visualization and Visual Mining

DOI: 10.4018/978-1-7998-9220-5.ch074

INTRODUCTION

The standard style of software development is to analyze the problem, develop a design to solve the un-
derlying problem, and implement the design into an application. As a result, the application is strongly 
tied to the problem to be solved. With new requirements, the application must be extended to solve the 
new problem. This way of software development is fine in many cases. However, applications built in 
this style may not work well when dealing with big data, which contains a wide variety of data types 
and structures.

In order to be able to handle a large amount of data, the software system must be flexible and agile. 
This chapter uses an example to show that following traditional standard programming would result in 
rigid and complex software components. An approach is presented that combines generic programming, 
pattern-oriented programming, and agent-oriented programming to build flexible and agile software 
systems. The approach is used to build a data visualization system that can handle a large variety of 
data. The visualization system is part of a web and mobile geography application. This application has 
to process thousands of physical and human geography topics with hundreds of data sources from the 
internet. The focus of this chapter is the general technical approach to building a flexible, scalable, and 
agile visualization system that can handle this amount of data. Code segments are used for illustration. 
The programming language used in the presentation is Dart with the Flutter framework. Flutter is a new 
product from Google and is widely used for web and mobile app development. The Dart language is 
similar to Javascript. Anyone with programming skills in C, C++, Java or Javascript can easily follow 
the code segments.

In this chapter, techniques are presented on how software components and patterns can change their 
behavior depending on the data context through reflection. The main motivation of aspect-oriented 
programming, the separation of concerns, is also discussed. In order to be able to pursue this approach, 
a paradigm shift in programming is required. This shift is also presented in this chapter.

The content of this chapter first deals with the background. This is followed by a section on generic 
programming, a section on patterns and frameworks, and a section on data, context, and agents. At the 
end, a conclusion is drawn, along with a section on the consequences and applicability of the develop-
ment approach and a section on future research and direction.

An Agent and Pattern-Oriented 
Approach to Data Visualization

Chung-Yeung Pang
 https://orcid.org/0000-0002-7925-4454

Seveco AG, Switzerland

Severin K. Y. Pang
Cognitive Solutions and Innovation AG, Switzerland



An Agent and Pattern-Oriented Approach to Data Visualization

1262

Background

This section provides background information about the programming paradigm and the agile develop-
ment process, the agent, and big data.

Programming, Paradigms, and Agile Development Process

In the early days of software history, programmers tended to develop their programs without docu-
mentation in an ad-hoc style. The programs are usually not structured and organized. One result of this 
programming style was the software crisis of the 1960s, 1970s and 1980s (Software Crisis, 2010).

Structural programming (Jackson, 1975) was introduced in the 1970s to combat spaghetti code result-
ing from the ad hoc style of programming. Much emphasis has been placed on how a program is well 
structured. However, it failed to handle the complexities of enterprise applications. At the end of the 
1980s, object-oriented (OO) programming began to spread. Software scientists claim that OO languages 
were designed for programming on a large scale (Wegner, 1989). The OO paradigm with polymorphism 
and inheritance was a solution to resolve and control the complexity of enterprise applications.

Despite its promises, the OO paradigm was not the ultimate destination of the programming paradigm’s 
journey. Thereafter, various programming paradigms were proposed with great promises. Much research 
has been carried out on these paradigms. These include aspect-oriented programming, pattern-oriented 
programming and agent-oriented programming.

Aspect-oriented programming deals with the separation of concerns. For example, technical infra-
structure code and business logic code should not be mixed in one software component. AspectJ (AspectJ, 
2021) is a practical aspect-oriented extension of the Java programming language. This chapter also takes 
this concept into account.

We live in a world full of patterns. Our habits are nothing more than repetitively following a series of 
behavior patterns. The publication of the book by Gamma et al. (1995) made software developers aware 
of patterns that we use all the time and that should be used in software development. A pattern is defined 
as the solution to a problem in a specific context. Pattern-oriented programming is a programming ap-
proach to identify the problem to be solved and to look for the pattern that provides the solution to the 
problem in the given context. Patterns in the context of this chapter differ from those of Gamma et al. 
(1995) and other authors (Weiss, 2003; Hohpe, & Woolfe, 2004). They are not abstractions of a software 
design. This chapter uses the properties of a pattern proposed by Pang (2020). A pattern can provide a 
solution through a set of code, composing other patterns together, getting resources, and activating a set 
of actions to handle a problem in the requests.

Agent-oriented programming (AOP) was introduced by Shoham within his Artificial Intelligence 
studies in 1990 (Shoham, 1990). His definition of AOP is the following:

AOP can be viewed as a specialization of object-oriented programming. The state of an agent consists 
of components called beliefs, choices, capabilities, commitments, and possibly others; for this reason, 
the state of an agent is called its mental state. The mental state of agents is captured formally in an 
extension of standard epistemic logics: beside temporalizing the knowledge and belief operators, AOP 
introduces operators for commitment, choice and capability. Agents are controlled by agent programs, 
which include primitives for communicating with other agents. In the spirit of speech-act theory, each 
communication primitives is of a certain type: informing, requesting, offering, and so on.



 

 

21 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/an-agent-and-pattern-oriented-approach-to-data-

visualization/317534

Related Content

Ant Miner: A Hybrid Pittsburgh Style Classification Rule Mining Algorithm
Bijaya Kumar Nandaand Satchidananda Dehuri (2020). International Journal of Artificial Intelligence and

Machine Learning (pp. 45-59).

www.irma-international.org/article/ant-miner/249252

A Novel Approach to Kinect-Based Gesture Recognition for HCI Applications
Sriparna Saha, Rimita Lahiriand Amit Konar (2020). Handbook of Research on Emerging Trends and

Applications of Machine Learning (pp. 62-78).

www.irma-international.org/chapter/a-novel-approach-to-kinect-based-gesture-recognition-for-hci-applications/247559

Convolution Neural Network Architectures for Motor Imagery EEG Signal Classification
Nagabushanam Perattur, S. Thomas George, D. Raveena Judie Dollyand Radha Subramanyam (2021).

International Journal of Artificial Intelligence and Machine Learning (pp. 15-22).

www.irma-international.org/article/convolution-neural-network-architectures-for-motor-imagery-eeg-signal-

classification/266493

Analysis and Implications of Adopting AI and Machine Learning in Marketing, Servicing, and

Communications Technology
Priyal J. Borole (2024). International Journal of Artificial Intelligence and Machine Learning (pp. 1-11).

www.irma-international.org/article/analysis-and-implications-of-adopting-ai-and-machine-learning-in-marketing-servicing-

and-communications-technology/338379

Autonomous Navigation Using Deep Reinforcement Learning in ROS
Ganesh Khekareand Shahrukh Sheikh (2021). International Journal of Artificial Intelligence and Machine

Learning (pp. 63-70).

www.irma-international.org/article/autonomous-navigation-using-deep-reinforcement-learning-in-ros/277434

http://www.igi-global.com/chapter/an-agent-and-pattern-oriented-approach-to-data-visualization/317534
http://www.igi-global.com/chapter/an-agent-and-pattern-oriented-approach-to-data-visualization/317534
http://www.irma-international.org/article/ant-miner/249252
http://www.irma-international.org/chapter/a-novel-approach-to-kinect-based-gesture-recognition-for-hci-applications/247559
http://www.irma-international.org/article/convolution-neural-network-architectures-for-motor-imagery-eeg-signal-classification/266493
http://www.irma-international.org/article/convolution-neural-network-architectures-for-motor-imagery-eeg-signal-classification/266493
http://www.irma-international.org/article/analysis-and-implications-of-adopting-ai-and-machine-learning-in-marketing-servicing-and-communications-technology/338379
http://www.irma-international.org/article/analysis-and-implications-of-adopting-ai-and-machine-learning-in-marketing-servicing-and-communications-technology/338379
http://www.irma-international.org/article/autonomous-navigation-using-deep-reinforcement-learning-in-ros/277434

