
Issues and Trends of IT Management in Contemporary Organizations 323

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

An Experimental Evaluation of Dynamic
Electronic Catalog Models in Relational

Database Systems
Kiryoong Kim, Dongkyu Kim, Jeuk Kim, Ighoon Lee and Sang-goo Lee

School of Computer Science and Engineering, Seoul National University, Kwanak-gu Shillim-dong, Seoul, Korea
Tel: +82-2-883-9235, Fax: +82-2-872-1858, {kosk, dkkim, ihlee, sglee}@europa.snu.ac.kr

Sang-uk Park and Sang-goo Lee
CorelogiX, Inc., Seoul National University, Seoul, Korea, {spark, sglee}@corelogix.co.kr

ABSTRACT
Electronic catalogs are information about products and services in the electronic commerce environment and require diverse and flexible
schemas. Although relational database systems seem to be an obvious choice for their storage, traditional designs of relational schemas
cannot support electronic catalogs in the most effective ways. Therefore, new models for managing diverse and flexible schemas in
relational databases are required for such systems. This paper proposes several models for electronic catalogs using relational tables,
and presents an experimental evaluation of their efficiency. The results of this study can be put to practical use and is, in fact, being
applied in the design of a commercial software product.

INTRODUCTION
Electronic catalogs are electronic representations of informa-

tion about the products and services of an organization [1]. A typical
catalog containing 100,000 products may contain thousands of differ-
ent schemas [3]. For example, a �TV� may have a �voltage� attribute,
while a �pen� may not. Consequently, one of the biggest problems in
electronic catalogs is diversity of schemas for products.

For this reason, XML seems to be a suitable alternative that
meets the requirements of electronic catalogs. However, it is ineffi-
cient to store large number of catalog data as XML documents. Rela-
tional database systems are still the most practical choice for manag-
ing business data. [6]. However, traditional relational databases are not
geared to managing several schemas at once or managing a universal
table with many nulls [3].

Consequently, careful application level design is required. For
example, a frequently used model represents catalogs in the form of
<id, attribute name, attribute value>. This scheme requires multiple
self-joins to retrieve information about a product and, thus, is ineffi-
cient in managing a large quantity of product data. We should there-
fore consider other models that efficiently support the view of thou-
sands of tables from an application perspective, yet manage the data-
base from a finite set of verticalized tables [3].

In this paper, we suggest several models for electronic catalogs
using relational databases, and verify the efficiency of each one through
experiments. The goal of this paper is to find the most efficient model
by experiment, and to utilize it in a practical electronic catalog sys-
tem.

TERMINOLOGY
There may be some confusion on the terminology, as the stan-

dards for electronic catalogs are not yet fully established. In this sec-
tion, we introduce some terms used in this paper.

Product group: A group of products that are treated as the �same
type� of products [5]. We assume that products in a specific product
group share the same set of attributes, and that a product belongs to
only one product group.

Common attributes: The attributes that is common to all the
product groups [5]. We represent the set of common attributes as C;

C = {c1, c2, �, cn } ,
where ci is an attribute required for every product group in the data-
base, such as product group id., and product id.

Dependent attribute: The attributes those are specific to a prod-
uct group. Let Di be a set of dependent attributes for the product group
i, then

Di = {di1, di2, �, djm} ,
where dij is an attribute for product group i and not in C, such as
�voltage� of refrigerators, �diameter� of bearings, or �frequency� of
celluar phones.

Now, we can express a schema for product group i as Pi.
Pi = C *�Di

Product group id: Attribute that identifies a product group such
as the classification code of products.

Product id: Attribute that identifies each individual product in
the database such as the SKU#1 or EAN/UCC2 code. Each product has a
unique product id.

PRIMITIVE MODELS
In this section, we present several data models for constructing

electronic catalogs in a relational database. The name of each model
describes its representative table.

Universal Table (UT)
The UT model stores product data in a table with a schema

consisting of the union of common attributes and dependent attributes
of all product groups. This table, TUNIVERSAL can be expressed follows:

TUNIVERSAL = C *�(*�Di)
Each tuple in this table represents one product. This model re-

quires another table to keep the meta-data identifying the attributes
relevant for each product group. The schema for table TUNIVERSAL_META is
defined as follows:

TUNIVERSAL_META = (product group id, attribute name)
Underlined attributes denotes key attributes. Each instance of

attribute name should be identical with the name of each attribute in
TUNIVERSAL. To introduce a new product group into the catalog, we should
add new attributes to TUNIVERSAL and insert corresponding meta-data for
the product group into TUNIVERSAL_META.

Now, we define the UT model as MUT:
MUT = (TUNIVERSAL, TUNIVERSAL_META)

The merit of this model is its simplicity. Not many tables are
created. In addition, we can use the integrity constraints provided by
the DBMS since the model uses the relational schema directly. On the
other hand, there may be too many nulls in the instance of TUNIVERSAL,
because each tuple uses only some of the attributes in the table. How-

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4209
IDEA GROUP PUBLISHING

324 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ever, because of its simplicity, UT is currently a popular model in
actual electronic commerce applications [5].

Name-Value Pair Table (PT)
The PT model stores product data in a table, TPT, which is defined

as follows:
TPT = (product id, product group id, attribute name, attribute value)

Just like TUNIVERSAL_META in MUT, each instance of attribute name
should be identical with the name of each attribute in TUNIVERSAL. In
other words, it expresses name of each attribute belonging to each
product group. As each attribute belongs to a specific product group,
product group id is needed to express it. We must keep meta-data
about the attributes each product group uses. Let TNAME-VALUE_PAIR_META be
a table for these meta-data:

TPT_META = (product group id, attribute name, c1, c2, �, cn)
ck is a constraint for each attribute; for example, its data type, whether
it allows null, or whether it is a unique value.

Now, we can define MPT as follows:
MPT = (TPT, TPT_META)

This is the most flexible model currently used in relational data-
bases, as new attributes can be added without changing the schema of
the table. To introduce a new product group, we simply insert tuples
describing meta-data into TPT_META. For this reason, this model is also
popular.

On the other hand, this model cannot use the integrity con-
straints provided by relational database systems. For example, we should
translate all values into character strings or some other common data
types, and check each type of data by managing the meta-data. Be-
sides, all the data must be stored in fixed-length records.

Another drawback is that this model uses too many tuples, be-
cause it requires one tuple for each attribute, not each product.

HYBRID MODELS
The primitive models described in Section 3 deals with all the

attributes in the same way. However, it might be more efficient to
handle common attributes and dependent attributes differently, be-
cause the former are fixed for all product groups, while the latter vary
with the product groups. In this section, we present hybrid models,
combining the primitive models.

Common attributes do not vary with product groups, so it is
reasonable to manage common attributes using a single table, as done
in TUT. Thus, we define a schema TCOMMON that is a projection of com-
mon attributes from TUT.

TCOMMON = �C(TUT)

HYBRID_1
HYBRID_1 combines UT and PT. It is composed of three tables.

MHYBRID_1 = (TCOMMON, TPT, TPT_META)
TCOMMON contains common attributes of all the products in the

same way as UT, whereas TPT and TPT_META store dependent attributes in
the same way as PT. In contrast with PT, instances of TPT and TPT_META
in this model do not contain tuples for common attributes because
they are included in instances of TCOMMON.

HYBRID_2
The main problem with PT and HYBRID_1 is that they require

multiple tuples for a product, as they use one tuple for one attribute.
To solve this problem, we introduce TOPTION as follows:

TOPTION = (product id, product group id, optional field1, optional
field2,�, optional fieldn)

Each product group can use optional fields in TOPTION for its at-
tributes. If the number of optional fields are at least the maximum of
the number of elements in Pi, only one tuple would be sufficient for
one product. To use this table, we require another table that manages
its meta-data:

TOPTION_META = (product group id, optional field #, attribute name,
c1, c2, �, cn) ,

where ck is a constraint for the attribute.
TOPTION_META is similar to TPT_META except that it contains an at-

tribute that indicates a specific optional field in TOPTION. Combining
(joining) TCOMMON and TOPTION, we define TCOMMON_OPTION as a table contain-
ing the common attributes and optional fields (TCOMMON ·%Á% TOPTION).

HYBRID_2 is a model using these tables.
MHYBRID_2 = (TCOMMON_OPTION, TOPTION_META)

Values of dependent attributes are stored in option fields of
TCOMMON_OPTION, with TOPTION_META storing their meta-data. In this case, the
number of option fields must be large enough so that it is at least the
maximum of the number of elements in Di, for all i.

HYBRID_3
HYBRID_3 is composed of three tables.

MHYBRID_3 = (TCOMMON, TOPTION, TOPTION_META)
HYBRID_3 is similar to HYBRID_2 except that it separates

TOPTION from TCOMMON, so we can expect better performance for queries
with conditions only on common attributes or only on dependent
attributes, but worse performance is expected for queries with condi-
tions on both common attributes and dependent attributes because of
join operations.

ANTICIPATED QUERIES FOR
ELECTRONIC CATALOGS

When we manipulate electronic catalogs, our requirements are
expressed as relational queries. There are several classes of these que-
ries. We transformed these queries into relational queries suited to each
model and used them as testing queries.

Queries That Retrieve Desired Data
From the Electronic Catalogs

These queries are most frequently used because the main purpose
of an electronic catalog is to provide product information to buyers.

Query group 1.1: Retrieval of key with exact conditions for
common attributes

Query group 1.2: Retrieval of key with exact conditions for
dependent attributes

Query group 1.3: Retrieval of key with exact conditions for
common and dependent attributes

Query group 2.1: Retrieval of key with range conditions for
common attributes

Query group 2.2: Retrieval of key with range conditions for
dependent attributes

Query group 2.3: Retrieval of key with range conditions for
common and dependent attributes

Query group 2.4: Retrieval of key by pattern matching for
common and dependent attributes

Query group 3: Retrieval of an entire set of product data

Queries That Manipulate Data
in the Electronic Catalogs

These queries are necessary to insert, delete, or update product
data in the electronic catalogs.

Query group 4.1: Insert new product data
Query group 4.2: Update product data
Query group 4.3: Delete product data

Queries That Manipulate Schemas of the Electronic Catalogs
Electronic catalogs change over time. For example, a new prod-

uct group might be introduced, or new attributes might be required for
an existing product group. These queries allow changes to schemas for
product groups in electronic catalogs.

Query group 5.1: Add a new product group
Query group 5.2: Modify product group information
Query group 5.3: Drop a product group

Issues and Trends of IT Management in Contemporary Organizations 325

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

EXPERIMENT
Environment

Experiments were null on a Solaris Ultra Sparc II machine with
332 MHz CPU and 512 MB RAM.

The tests were carried on two different DBMSs because some
factors associated with a particular DBMS could affect the results. The
DBMSs were Oracle 8i and MySQL version 3.22.20a

We took experimental data from electronic catalogs provided by
the Public Procurement Service (PPS)3 of the Korea, EAN Korea4, and
LOTTE.com Inc.5 The original catalogs were in the form of universal
tables with different schemas. The combined catalog contained data on
51,766 individual products in 100 product groups. The product groups
shared 18 common attributes, and the number of dependent attributes
ranged from 2 to 15. Product groups contained from 4 to 986 products.

All product data were transformed into the tables presented in
Sections 3 and 4.

Module for Measuring Time
We implemented a measuring module with the Java programming

language and JDBC. This module reads queries in script files written in
a specifically defined format we defined, and measures the time to
process them.

The script file consists of groups of query sections. Each section
is composed of queries required to complete one transaction, and each
group corresponds to the query group described in Section 5. The
module process each group of query sections and takes the average of
the times to process each of them. Each script file was executed 10
times and the results were recorded.

Index
Indexes increase the speed of retrieval, but decrease the speed of

inserting or updating data. In an e-catalog system, we usually use que-
ries to retrieve data from tables more frequently than queries to insert
or update data. Moreover, the models we mentioned above manage
data in one or two tables, so they would have too many tuples to
process without indexes.

We experimented with indexes with each model.
UT: A table on UT has so many fields that it is not easy to decide

which fields should be indexed. In the experiments, we used an index on
product group id, as it was the field most frequently referenced.

PT: In PT, queries are usually associated with a product group id,
and there are only a few fields in a table, so we created indexes on all
the fields.

HYBRID_1: HYBRID_1 has features of both UT and PT, so we
applied the methods of both models.

HYBRID_2: We created an index on product group id and on
some fields that were frequently referenced, such as product name,
price, and manufacturer.

HYBRID_3: We created two different groups of indexes for HY-
BRID_3. One was an index on product group id and some fields that
were frequently referenced, and the other was a group of indexes on all
the option fields and half of the common attribute fields frequently
referenced.

RESULTS
Oracle 8i

[Figure 1] shows the results of experiments using Oracle 8i in
milliseconds. A highlighted cell indicates the best result in each row. As
a result of caching, values of first run results were too high for all cases
and increased the variance of the results. So we excluded them.

Performance of UT was not inferior to other models. The width
of a table had little detrimental effect upon performance in this case.

Model PT performed worst on average. In the experiment, in-
stances of TPT in MPT included 1,354,493 tuples, and it required too
many self-joins because each attribute was expressed as one tuple.
While PT showed relatively good performance on query group 3, as

self-joins were not required in those queries, it seemed to be an ineffi-
cient model overall. For the same reason, HYBRID_1 produced to be
an inefficient model among the hybrid models, because it stored de-
pendent attributes in TPT.

HYBRID_3 outperformed the other models on average. How-
ever, it was very inefficient for queries accessing both common at-
tributes and dependent attributes because it manages them in separate
tables. On the other hand, HYBRID_2 was uniformly efficient for
most queries.

Query PT UT Hybrid-1 Hybrid-2 Hybrid-3

1.1 5673.04 379.42 290.93 696.31 363.47

1.2 2878.40 398.27 1053.71 368.60 246.69

1.3 3465.29 358.18 882.38 295.62 272.62

2.1 3156.44 6.85 6.74 7.26 6.41

2.2 2527.04 277.11 809.29 200.67 129.96

2.3 7971.07 290.48 1547.74 196.07 1323.26

2.4 22234.48 122.37 2824.89 238.11 338.78

3 2850.89 15.70 876.41 372.81 36834.59

4.1 57.89 3.67 14.19 2.37 4.33

4.2 7008.78 260.22 1021.07 294.63 411.44

4.3 148815.70 17523.26 64446.33 10521.81 22216.67

5.1 50.11 8.56 36.78 8.67 8.33

5.2 3911.56 2.67 1.67 1.78 1.33

5.3 3016.67 1845.89 2292.33 1320.89 433.33

Figure 1: results of experiments using Oracle 8i in milliseconds

Oracle 8i with Indexes
[Figure 2] shows the results with indexes, using Oracle.

PT also showed the worst performance on average, but showed
the best performance on query group 3, which did not require self-
joins. Results for the other models were similar to those without in-
dexes except that processing time generally decreased.

We performed another experiment on HYBRID_3 with addi-
tional indexes, to verify how much this model could be improved by
indexes. These were created on all the fields of TOPTION and each fre-
quently referred field of TCOMMON in MHYBRID_3. A column,
HYBRID_3_ext, in [Figure 2] is the result for this experiment. As
shown in the figure, indexes greatly improved the performance.

It was difficult to create indexes on the table in UT because of the
large number of attributes.

MySQL
[Figure 3] shows experimental results for UT, HYBRID_2 and

HYBRID_3 on MySQL. We didn�t test PT and HYBRID_1 because
they showed significantly worse performance in the previous experi-
ment on the Oracle. We also didn�t test with indexes on MySQL
because we didn�t have enough time for the experiment, but we believe
that indexes cannot change the order of results on each model, judging
from the results on the Oracle.

Because MySQL is far simpler DBMS, the results on MySQL had
somewhat different features in comparison with those on Oracle. UT
was far worse than the others on almost all queries, and HYBRID_3
showed relatively good performance on query group 3. These results
indicate that the efficiency of each model could vary with DBMS,
because of different storage managements, query processing, transac-
tion managements, and so on. However, hybrid models showed more
regular efficiency than UT.

326 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Query PT UT Hybrid-1 Hybrid-2 Hybrid-3 Hybrid-3-ext

1.1 4332.02 301.51 299.18 621.62 389.20 8.50

1.2 1921.96 255.71 34.38 365.51 303.60 5.88

1.3 2939.60 293.60 17.84 234.20 14.31 13.18

2.1 2995.19 7.41 6.48 7.15 7.22 4.90

2.2 2468.89 244.22 5.15 244.74 158.89 10.57

2.3 6496.85 279.30 60.30 196.56 5.48 8.07

2.4 17116.26 116.81 7.07 44.78 6.19 5.93

3 4.89 16.07 1876.52 349.41 234.70 15.73

4.1 45.11 2.52 28.67 5.41 14.89 34.90

4.2 8708.11 253.26 151.89 374.44 253.11 623.43

4.3 149544.10 22214.37 151330.40 28107.93 30706.96 31239.94

5.1 162.56 9.89 67.00 16.33 28.11 171.23

5.2 9200.33 1.89 21.56 1.44 29.67 8703.41

5.3 7504.22 1410.00 119.44 1155.33 633.89 3219.81

Figure 2: Results of experiments with indexes, using Oracle

Space Analysis
[Figure 4] shows total amounts of storage used to store catalogs in

each model on Oracle 8i and MySQL. Each value was measured in
megabytes. We presumed that UT would have many null values and
incur a good amount of wasted space. However, the result shows that
UT did not overuse storage. On the contrary, PT had the worst space
complexity, because each attribute name was stored in each tuple belong-
ing to TPT. HYBIRD_3_ext, which we mentioned in section 7.2, required
additional storage for indexes, more than for the tables themselves.

CONCLUSION
It is believed that PT is a proper model for managing diverse and

flexible catalogs in relational databases. However, our experimental

Query UT HYBRID-2 HYBRID-3

1.1 2066.22 861.01 592.38

1.2 2068.33 863.69 551.47

1.3 2052.96 858.98 1001.98

2.1 4349.96 3539.67 3193.26

2.2 2136.93 992.19 691.04

2.3 2113.74 962.67 20251.15

2.4 2729.19 1701.74 1407.33

3 2081.00 843.43 1132.82

4.1 1.70 1.78 2.52

4.2 3874.59 2821.15 4342.56
5.1 5.00 5.89 5.33
5.2 3.00 1.11 1.13

Figure 3: Shows experimental results

 PT UT HYBRID-1 HYBRID-2 HYBRID-3 HYPER-3-ext
Tables on Oracle 126.67 39.85 62.59 35.51 50.14 50.14

Indexes on Oracle 112.47 2.28 57.66 11.23 12.6 51.02
Tables on MySQL 72.29 24.68 41.20 23.53 33.28 -

Figure 4: Total amounts of storage used to store each model

results show that this model is inefficient to be applied in practical
cases, despite its flexibility. Moreover, applications would have too
much work to do to keep integrity constraints, as DBMSs cannot
guarantee them. Despite its popularity, we conclude that PT is not a
suitable model for current relational database catalog systems.

UT, which is another popular model, also cannot be regarded as a
good model because of the fact that as the number of attributes in-
creases, it becomes harder to manage. It may also show bad perfor-
mance in the DBMSs that deal poorly with nulls. Meanwhile, UT
requires the least storage of all the models in the experiments. This is
believed to be the result of efficient null value management in current
relational database systems.

We made an attempt to combine the good features of the primitive
models by using hybrid models. In the results, HYBRID_2 and HYBRID_3
were good in both performance and space complexity, so we can expect
them to be applied to practical electronic commerce systems. Moreover,
these models can improve their performance by using indexes since stor-
age is currently a far cheaper resource than time.

ACKNOWLEDGEMENTS
We would like to thank Kyungsuk Kim and Hyunyoung Song for

their helpful suggestions and efforts in the implementation. We are
also grateful to PPS, LOTTE.com Inc. and EAN Korea for offering
their catalogs data for our experiments. The RIACT at Seoul National
University provides research facilities for this study. This work was
supported by Brain Korea 21 Project in 2001.

ENDNOTES
1 Stock Keeping Unit number
2 Universal Code Council / European Article Numbering
3 An administrative agency of the Republic of Korea which is re-

sponsible for procuring commodities and related services from domestic
and foreign sources, for procuring works for major government projects,
for stockpile management, and for government property management.

4 A member organization of EAN International which is taking a
leading role in establishing a global multi-industry system of identifica-
tion and communication for products.

5 One of leading B2C companies in Korea which has much expe-
rience in managing electronic catalogs for retail goods.

REFERENCES
1. Arie Segev, Dadong Wan and Caroline Beam, Electronic catalogs: a

technology overview and survey results, Proceedings of the 4th Inter-
national conference on information and knowledge management
Baltimore, Maryland, USA, Nov 29-Dec 2, 1995, pp. 11-18.

2. Arie Segev, Dadong Wan, Carrie Beam, Designing Electronic Catalogs
for Business Value: Results from the CommerceNet Pilot, CITM
Working Paper WP-95-1005, Haas School of Business, University of
California, Berkeley, 1995.

3. Anant Jhingran, Moving Up the Food Chain � Supporting E-Com-
merce Applications on Databases, Technical Report, IBM Almaden
Research Center, 2000.

4. Michael Stonebraker, Joseph M. Hellerstein, Content Integration for
E-Business, White Paper, Cohera Corp., 2000.

5. Jihye Jung, Dongkyu Kim, Sang-goo Lee, Chisu Wu and Kapsoo Kim,
�EE-Cat: Extended Electronic Catalog for Dynamic and Flexible
Electronic Commerce�, Proceedings of the Information Resources
Management Association International Conference Anchorage,
Alaska, USA, May 21-24, 2000, pp. 303-307.

6. Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He,
David J. DeWitt and Jeffrey F. Naughton, Relational Databases for
Querying XML Documents: Limitations and Opportunities., Pro-
ceedings of 25th International Conference on Very Large Data
Bases, Edinburgh, Scotland,, 1999, pp. 302-314.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/experimental-evaluation-dynamic-

electronic-catalog/31782

Related Content

A Critical Theory Approach to Information Technology Transfer to the Developing World and a

Critique of Maintained Assumptions in the Literature
Khalid Al-Mabrouk (2009). Information Systems Research Methods, Epistemology, and Applications (pp.

73-87).

www.irma-international.org/chapter/critical-theory-approach-information-technology/23469

Performance Measurement of a Rule-Based Ontology Framework (ROF) for Auto-Generation of

Requirements Specification
Amarilis Putri Yanuarifiani, Fang-Fang Chuaand Gaik-Yee Chan (2022). International Journal of Information

Technologies and Systems Approach (pp. 1-21).

www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-

generation-of-requirements-specification/289997

Design of an Integrated Project Management Information System for Large Scale Public

Projects: Iranian Case Study
Mona Taghavi, Ahmed Pateland Hamed Taghavi (2013). Interdisciplinary Advances in Information

Technology Research (pp. 150-164).

www.irma-international.org/chapter/design-integrated-project-management-information/74539

A RNN-LSTM-Based Predictive Modelling Framework for Stock Market Prediction Using

Technical Indicators
Shruti Mittaland Anubhav Chauhan (2021). International Journal of Rough Sets and Data Analysis (pp. 1-

13).

www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-market-prediction-using-

technical-indicators/288521

Hindi Text Document Classification System Using SVM and Fuzzy: A Survey
Shalini Puriand Satya Prakash Singh (2018). International Journal of Rough Sets and Data Analysis (pp. 1-

31).

www.irma-international.org/article/hindi-text-document-classification-system-using-svm-and-fuzzy/214966

http://www.igi-global.com/proceeding-paper/experimental-evaluation-dynamic-electronic-catalog/31782
http://www.igi-global.com/proceeding-paper/experimental-evaluation-dynamic-electronic-catalog/31782
http://www.irma-international.org/chapter/critical-theory-approach-information-technology/23469
http://www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-requirements-specification/289997
http://www.irma-international.org/article/performance-measurement-of-a-rule-based-ontology-framework-rof-for-auto-generation-of-requirements-specification/289997
http://www.irma-international.org/chapter/design-integrated-project-management-information/74539
http://www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-market-prediction-using-technical-indicators/288521
http://www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-market-prediction-using-technical-indicators/288521
http://www.irma-international.org/article/hindi-text-document-classification-system-using-svm-and-fuzzy/214966

