
554 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

ABSTRACT
Large companies that have been in business for some years necessarily aggregate lots of history concerning their business. The business
lives and breaths in pursue of new markets, better price/earning rates, etc. Their business systems that were designated to support their
business does not always follow the dynamic needs of the business and the surrounding technology; the architecture and technology
demands changes; requirements for interchange and interoperability with other, maybe external system, are put forward. Today, there are
increasing demands to support open interfaces that can be easily integrated with Internet applications and integrating legacy systems
into state-of-the-art component infrastructures.
 In order to achieve this, we need to identify the structure of the business in terms of systems and components. We need to identify the
dependencies between components and the structure and semantics of their interfaces. In this paper, we describe a method based on
Unified Modelling Language (UML) and Unified Process (UP) that is tailored to describe component architectures in terms of their
collaborations, their structure and semantics of interfaces, to facilitate integration capabilities between components in heterogeneous
environments. We also use forthcoming concepts in UML 2.0 to model protocols between components. We aim to provide a method that
supports a model driven architecture (MDA�[1]) tuned towards integration.

A Method Tailored For System Integration
Jon Oldevik and Arnor Solberg

SINTEF Telecom and Informatics, Norway, {jon.oldevik, arnor.solberg}@sintef.no

Audun Jensvoll
EDB4Tel, jensvoll@edb4tel.com

BACKGROUND AND INTRODUCTION
Enterprises today exist in an environment of rapid technology

changes. The flavour of the month of implementation languages,
database systems, and hardware platform is quickly changing. The
choices made in the 1970ies and 1980ies are still alive in terms of
legacy systems. Although these still may support the business fine, we
need methods and techniques for integration with new systems built on
newer technology to support new business and market requirements.

The industry put forward demanding requirements for flexible
and customisable development processes that support development
within diverse communities, towards heterogeneous hardware and soft-
ware platforms. In addition, there is an increasing need for standardising
the specification of the system, not in terms of process, but in terms
of artefacts. A standard set of deliverables from a specification and
design process leverages the value of this activity. We encourage the
model-driven (or artefact-driven) development that focuses on
standardised artefact deliverables. This standard should be equally valid
for specifications of new and existing systems. The goal is to enable
integration of existing components and new components by using the
same framework for specification and design.

The method presented here focuses on delivering models on dif-
ferent abstraction levels; the models are the operative force of achiev-
ing deliverable artefacts and provides a structural organisation of
deliverables for the developers. It is not a full-fledged method back-
bone, but aimed at supporting component specification within hetero-
geneous environments.

The most recent background for this work was conducted for the
Norwegian Telecom Company Telenor and has been further refined
since then. Here we applied results and ongoing work from several EC
projects (OBOE[4], DISGIS[5], COMBINE[6]) and Norwegian research
projects (MAGMA[7] and DAIM[8]). UML and RUP/UP are major
input factors in all the methodology work done here, but also concepts
from Ooram[9], Catalysis[10], and others.

The following sections describe the details of our method and
how it facilitates system integration.

FACILITATING SYSTEM INTEGRATION
System integration spans a range of complex problem areas that

hardly is solved by a single solution. We can organise complementary
integration aspects within an integration architecture, representing
different aspects of integration; control integration, data integration,
process integration, presentation integration, and business-level inte-

gration. (These integration areas are defined in the ECMA/NIST toaster
model[11] and refined in Berre93[12].) Within such an architecture, a
key catalyst for successful integration (and migration) is a method
that enables a unified way of describing existing systems, new systems,
and their integration. Figure 1 depicts that interoperability between
systems and inter-working between people is facilitated/leveraged by
the method. Interoperability is achieved by being able to integrate
systems at different levels. Inter-working between people is achieved
by means of shared tools and methods, which leverages human com-
munication and common understanding.

method

Business-level
integration

interworking

System-level
integration

Control
integration

Data
integration

Presentation
integration

Process
integration

interoperability

Figure 1: Integration architecture

Integration between components and systems can only be achieved
if we know the interfaces and the behaviour of the engaged parties. We
need a common way of describing components and interfaces and
common means of locating, inspecting, and using them.

Another aspect of integration is how interrelated systems and
components reflect towards the business level. Ultimately one must be
able to identify the business benefits of integration, i.e. we should be
able to map between business goals and the technical interconnection
of systems, be it existing or new interconnections.

Unified process (UP) and UML provides a baseline for describing
systems in terms of process framework and standard notation. These

This paper appears in Issues and Trends of Information Technology Management in Contemporary Organizations, the proceedings of the
Information Resources Management Association International Conference. Copyright © 2002, Idea Group Inc.

701 E. Chocolate Avenue, Hershey PA 17033-1117, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4244
IDEA GROUP PUBLISHING

Issues and Trends of IT Management in Contemporary Organizations 555

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

are, however, too flexible and too widely scoped to support the spe-
cific needs within an enterprise. Most importantly, they do not target
the specific need of describing system and component integration. We
provide a more specialised set of models and techniques that standardises
how to describe components, their interfaces, their integration, and
their link with the business level.

MODEL-DRIVEN PROCESS
Our overall process is phase-driven like the Unified Process. It

contains a set of phases that ends in a review activity. Each phase is
divided in a set of iterations, where each iteration delivers a review
artefact. The process diverges from UP in its dedicated focus on com-
ponents and their interfaces. This is particularly visible in the deliv-
ered artefacts, which are focused around the interfaces of components.
Even though the goal of the business modelling is to understand and
describe the business and its requirement, the reason for doing it is to
identify components supporting the business and describe the details
of their interfaces.

An important factor is the combined support for existing (legacy)
and new systems in the process. The specification of an existing com-
ponent developed in e.g. Cobol should be according to the standardised
framework and thus compatible on a model-level with other specifica-
tions e.g. for EJB components. The main difference from UP is the
dedication towards platform independent models, focusing on compo-
nents, their protocols and interfaces. In addition, we provide special
techniques to support bottom-up analysis of existing components.

ARCHITECTURE-DRIVEN METHOD
The method recommends establishing of reference architectures

that supports the domain within which we are currently working. The
goal is that a reference architecture will help organising concepts
according to well-known rules, which in turn will facilitate
interoperability between specifications.

The reference architecture defines a logical architecture, in which
general modelling concepts are identified and described in a UML
profile. This profile defines which concepts to use during modelling
and their semantics. An example of this could be a profile that defines
modelling concepts for web-service, business service, business entity,
web-presentation-component, and business event. This profile reflects
a reference architecture that should be enforced when modelling and
supported by modelling tools.

Adopting reference architectures that discipline the end-artefacts
of the development method leverages the odds of reusability and in-
creases system integration ability, since artefacts follow the same struc-
tural and behaviour rules to some extent.

MODELS
The models are the central focal point of our method. These are

replacement of UP�s core workflows. The model abstraction provides
a simplified view of the developers workspace, focusing on the roles
and their responsibilities during development through the models they
are responsible for.

We distinguish between four modeller roles: The business modeller,
the architecture modeller, and the interface modeller, with the follow-
ing responsibilities:
� The business modeller handles domain modelling, use case modelling,

and inter-domain use case modelling.
� The architecture modeller handles component collaboration, i.e. the

structuring behaviour of components.)
� The interface modeller handles interface design detailing, i.e. the

details of component interfaces and the protocols they are involved
in.

� The technology modeller handles technology-specific issues, i.e.
how a specification is realised in a particular technology.

The most important result of our process is a specification com-
plying to the reference architecture and that specifies all necessary

details of a set of components, their interfaces and protocols. We have
an iterative and incremental method and with many paths towards a
specification, depending on the experience and habits of the actors
fulfilling the modelling roles, and the starting point of the modelling.
When specifying existing systems, a bottom-up-oriented approach
might be appropriate, whilst a top-down-oriented approach might be
more suitable when specifying new systems.

Either way, and regardless of target technologies, the end prod-
ucts should follow the standard defined.

The Business Modeller
The business modeller describes the domain within consideration

and identifies the requirements to the system. The business modeller is
responsible for the following artefacts: (1) The domain model, com-
prising rich pictures, business processes, and business information model.
UML class models, use case diagrams, and activity diagrams are pro-
duced in this model. (2) The use case model, comprising high-level and
detailed use cases. UML use case diagrams are produced in this model.
(3) Inter-domain use cases, comprising a use-case oriented view on a
set of inter-related systems, focusing the area of concern on the inte-
gral parts of several systems. UML use case diagrams are produced in
this model. The business models provide a common way of describing
the business and thus a means of enabling business-level interworking
and integration.

The Architecture Modeller
The architecture modeller identifies the components within the

area of concern, identifies their interfaces, and describes the details of
their interaction. He/she is responsible for two main artefacts: (1) The
component structure model, comprising the components, their de-
pendencies, and their interfaces. Components are modelled using UML
subsystems or stereotyped classes. (2) The component interaction
model, comprising the collaboration behaviour of components. Inter-
actions are modelled using UML sequence diagrams. The structure of
components provides an overall picture of how components are inter-
related. The interactions show how components interact to achieve
their responsibility. Together with the interface details, these describe
the protocols needed for component interaction and integration.

The Interface Modeller
The interface modeller describes the details of component inter-

faces and is responsible for one artefact: The detailed interface speci-
fication, comprising the semantics of each component interface. This
artefact details the necessary logical structural and behavioural aspects
of the interfaces of components. The interfaces are modelled as UML
interfaces, detailed with properties (operations, attributes, and ab-
stract relationships). The goal is a technology independent specifica-
tion that provides a general abstraction of many possible technology
realisations. The detailing of the interfaces is in close relation with the
component interaction artefact, which together aims to describe the
protocols between components. The resulting artefacts are part of a
platform-independent model of the problem domain.

Technology Modeller
The technology modeller defines the appropriate transforma-

tion from a platform-independent model to a platform-specific model
(PSM). Within a specific domain, the transformation rules can be
tuned towards a specific reference architecture, which defines gener-
ally valid rules for technology transformations towards a specific tech-
nology platform. These rules can also define interoperability proper-
ties, i.e. how a component will access another, possibly legacy, com-
ponent.

The process of going from platform-independent to platform-
specific model is part of the model-driven strategy supported by this
method.

Figure 2 depicts the artefacts and indicates one possible flow of a
modelling iteration. The result of this iteration, is a platform-inde-

556 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

pendent component and interface specification. Then, from a set of
transformation rules, possibly described in terms of technology pro-
files, we produce platform-specific models.

Rich
picture

Business
processes

Domain
model

Iterative
&

Incremental

MWH
-User

Call
Cent
er
Le
ad
er

Media
leader

Mediaw
arehous
e

TheS
yste
m

CallCe
nter-
180

<<comm
unicate>
>Call

Handl
er

Effectua
te
service

<<con
tract>
>

Inter-domain
use case
model

Monitorin gSeismicAcquisi tion

�Sales &
�Planning

�Reporting &
�Moni torin g

�Vessel
Oper ation

�Exec. �Op.Mgr

�Vessel
Sch edule�Wo rk Ord er

�Prod.
statistics�Downtimestat.

�NCR

�Support
�Engin eering

Business
information

objects

Obtain ClubInfo and deli vertoregi steri ngPr oce
sor

Registrat
or

Secretaria
tapplication

ClubRegi st
er

Check ifClubexists

Club registration
Informatio n

AskClubRegi ster tocheckif Cl ub already
exists

Exi sti n
g

ClubInf
o

Ask to edit and confir mexisti ngClubInf
o

Exi sti n
g

ClubInf
o

Edi t and
texisti ng

cl ubInf
o

Ask to reg ister
Club Add

Club

[Club
Exi sts]

[Club do notExi sts]

use case model

Subsyst
m1

Subsyste
2

Subsyst
m3

Subsyst
m4

Architecture
model

Detailed use
case model

High level use
case model

 :SecretariatApplicat ion :ClubRegi ster :Registrator

regi sterClub

cl ubExists

regi sterClub

Interface
Model

Obtai
n

ClubInf
o

and deli ver
toregi steri ngPr oce

ssor

Registrator Secretaria
tapplication ClubRegi ster

Check if
Clubexists

Club registrationInformatio n

As
k
ClubRegi st
er

to
checkif Cl ub already

exists
Exi sti n
g

ClubInf
o

Ask to edit and confir m
existi ngClubInfo

Exi sti n
g

ClubInf
o

Edi t and
acceptexisti ng cl ubInfo Ask to reg isterClub Add

Club

[Club
Exi sts]

[Club do not
Exi sts]

Comp structure
model

Comp interaction
model

platform-independent models

platform-specific models

transformation
rules

 EJB-profiles .NET profiles
 CCM-profiles WebServices profiles

! implementations

Figure 2: The method in a nutshell

By basing the systems on platform-independent models and rule-
based transformation to platforms, we reduce the problems of chang-
ing technology and mapping towards heterogeneous platforms.

EXAMINING EXISTING SYSTEMS
Within an enterprise�s IT-systems portfolio of existing compo-

nents and systems, there will arise need of integrating parts of existing
systems with new, or other existing systems, in order to support new
business ideas in terms of IT-services.

In other words, we want to obtain and create new business oppor-
tunities by combining existing IT-services to achieve new services to
the customer. A simple example is to provide a new web-based end-user
application that integrates billing and ordering systems that are run
and managed separately, perhaps on different software and hardware
platforms.

Eventually, it requires an integration of several diverse compo-
nents or systems to achieve this goal. Our area of concern with regard
to this new problem is not one component, the other component, or
both components. It is an intersection between the involved compo-
nents that together solves the problem. This is the focus of the inter-
domain use case model, depicted as a part of Figure 2.

If we look at an imaginary order/billing situation, we can analyse
this from a use case perspective. The customer orders some product of
the on-line web ordering system. The order is processed and the order
engine checks the economic viability of the customer. Coming through
ok, the order is sent to the billing system, which creates an electronic
invoice sent to the customer.

When analysing the use cases, we see that at least three different
components are involved. Now, if we assume that these three compo-
nents already existed and that they solved the above indicated user
case, we know that these components are collaborating, interacting
through their interfaces. We need a way of analysing the collabora-
tion, relating it to the business case, and describe the protocols and
interfaces of these components. The inter-domain use case model has
proven a useful technique in this regard. Here, in a bottom-up ap-
proach, we identify the area of concern involving the parts of the
components involved, and unfold the actors external to the involved
components. This can be done recursively until the necessary level of
business actors and interest has been identified. This technique helps
bridging system integration with business requirements and goals.

The next step is to describe the details of the component collabo-
ration, including the details of interfaces to provide the technical
foundation for the integration.

Component Collaboration, Interfaces and Protocols
Components work together in order to solve some problem, in

what we call collaborations. A collaboration of components is defined
by the way the components interact to solve the problem. Interac-
tions are defined by the protocols enforced by the components, i.e.
the exact semantics of the behaviour.

The interfaces of a component define how other components
can plug into this component. This is also known as incoming inter-
faces. A components outgoing interfaces defines which external com-
ponents that are used. The way two components interact (i.e. the
messages sent between them) defines their protocol.

In order to define the protocol, we describe the interactions
between components for different use case scenarios in terms of UML
sequence diagrams. Each interaction scenario identifies parts of col-
laboration protocols in terms of the messages sent and the messages
responded from/to a component. Each message targeted for a compo-
nent must correspond to an operation specification on an interface
supported by that component.

The focus in our method is describing the protocols in the com-
ponent interaction model and detailing the interfaces in the interface
model. We have three views on a component collaboration. The com-
ponent structural model, the component interaction model, and the
interface model. Figure 3 depicts parts of how this can be modelled in
UML. In order to model to-way protocols between components, we
relate interfaces owned by components and associate protocol specifi-
cations to that relationship. This is not allowed in UML 1.x, but is
likely to be part of UML 2.0. The concept is similar to that of identi-
fying ports for components though which components can interact.

In order to support a standard artefact production, we standardise
on notation (i.e. we use UML) and how to use UML in the context of
component modelling. For describing interfaces, a standard template
must be followed. It covers completeness of signatures (operation
names, parameters, types, exceptions, pre- and post-conditions), com-
plying to an agreed-to type-system when modelling (e.g. using ISO
IDL types), using name conventions for names of components, inter-
faces, operations, attributes, parameters, etc.

IOrder Maker
<<Interface>>

createOrder(product_id : string) : Order
placeOrder(Order) : boolean

Order
+ id : string
+ customer_id : string

<<entity>> Product
+ id : string
+ name : string
+ price : long

<<entity>>
+for_product

OrderApp :
OrderUI

OrderService :
IOrder Maker

CreditChecker
: ICredit Check

BillServer :
IBilling

createOrder(string)

checkUser()

ok || nOk

placeOrder()

!NoCreditException

bill()

billInfo

billInfo

{if (credit != OK)}

Interfaces

Protocol spec

OrderService
<<component>>

BillingService
<<component>>

CreditCheckService
<<component>>

ProductOrdering
<<application>>

User
OrderUI

IOrder
Maker

IOrder
Fetcher

ILoginUI

IOrderCC ICredit
Check

<<protocol>>

IOrderBill IBilling

<<protocol>>

Figure 3: Collaborations, interfaces and protocols

Issues and Trends of IT Management in Contemporary Organizations 557

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Even though the platform-independent specification appears as
a model of standard, synchronous components interacting, this is not
necessarily the case. The target technology may as well be a message-
oriented or other asynchronous platform.

The complete details of component collaboration require that we
for each invocation from one component to another, specify the
expected behaviour in the sending and receiving end. Specifications in
terms of semi-formal OCL (Object Constraint Language) expressions
can define this behaviour. An OCL pre-condition can specify the re-
quired state of the receiving or sending end. A post-condition can
specify the required end-state of the receiving or sending end.

In the COMBINE[6] project, we are working on problems related
to guaranteed pluggeability of a component within an enterprise, based
on concepts defined in the EDOC[2] (Enterprise Distributed Object
Computing) submission to OMG (Object Management Group). EDOC
defines how components can interact through protocols and ports,
allowing a complete specification of a component. A protocol is de-
fined by the communication along two ports attached to components.
By combining several specifications, we can describe complete col-
laborations of components. The same problems addressed in UML 2.0,
where the need for ports and internal parts for components has been
identified.

FACILITATING REUSE OF ARTEFACTS
Standardising description of notation and semantics is for the

purpose of reuse. If reuse of modelling artefacts can be implemented in
an organisation, the benefit of a model-driven approach will really be
surfaced. In UP, the set of artefacts and techniques can appear too
versatile for establishing common understandings. A packaging into a
stricter framework of highly specific and standardised way of provid-
ing deliverable artefacts, is an important step towards benefiting from
existing assets.
� Business model reuse: The artefacts from business modelling can be

reused in terms of business process models, domain models, require-
ment models. We attain business specifications that provide a com-
mon platform for accessibility, availability, and usability.

� Component model reuse: The artefacts from the component and
interface models can be reused as platform-independent specifica-
tions as starting point for platform specific model generation/trans-
formation and to supply system integration wrappers based on com-
ponent and technology transformation specifications.

� Implementation reuse: Implementation of components that com-
ply to technology profiles specifications can be reused (in terms of
their specifications as well as their implementations and deployed
installations) to provide integration with new or existing compo-
nents.

CONCLUSIONS AND FUTURE WORK
In this paper we have described a method that facilitates system

integration by standardising a simple way of describing components,
their interfaces, and how they collaborate with other components.

Our approach tunes the apparatus available in UP/UML towards
specifying interfaces of components and how components interact
through interfaces. Our process is lightweight and aimed at producing
platform-independent artefacts that describe the essence of the bound-
aries of components.

In the future, we will look at implementing tools to support the
mapping from platform-independent models to platform specific
models and how to provide tool- support for automation of system-
level integration frameworks. We will also harvest experiences on the
deployment and usage of out method and use these for improvements
and extensions. We will work closely in line with the ongoing OMG
standardisation work on model-driven architecture and pursue a more
complete support for it through technology transformation techniques.
In the CAFÉ[13] project, we will build on these experiences in further
refinement and application of the MDA aspects. The standardisation

work on UML 2.0 is an important discussion arena for the evolution of
component modelling and will be followed closely within the scope of
our projects.

REFERENCES
[1] OMG�s Model Driven Architecture: http://www.omg.org/mda (MDA

is a trademark of OMG)
[2] OMG EDOC profile � UML profile for enterprise distributed object

computing, http://www.omg.org/techprocess/meetings/schedule/
UML_Profile_for_EDOC_RFP.html

[3] UML 2.0 Superstructure and Infrastructure RFPs, http://www.omg.org/
uml

[4] OBOE - Open Business Object Environment (OBOE). Esprit IV
project 23233, http://www.opengroup.org/public/oboe/Home.html

[5] DISGIS � Distributed Geographical Information Systems, Esprit IV
project http://www.cordis.lu/esprit/src/22084.htm

[6] COMBINE � COMponent-Based INteroperable Enterprise system
development, ESPRIT V project IST-1999-20893,

[7] MAGMA � Modular architecture, reuse, object-oriented methodol-
ogy, and workprocesses in software product development, a research
project sponsored by the Norwegian Research Council.

[8] DAIM - Distributed Architecture, Internet, and Multimedia, a re-
search project sponsored by the Norwegian Research Council.

[9] Ooram, Reenskaug, Wold, Lehne: Working With Objects. The OOram
Software Engineering Method, Manning/Prentice Hall 1996. ISBN
0-13-452930-8

[10] Catalysis, Desmond D�Souza, Alan C. Wills, �The Catalysis Ap-
proach�, ISBN 0-201-31012-0, www.catalysis.org

[11] ECMA/NIST Reference Model for Frameworks of Software Engi-
neering Environments, 3rd edition, http://www.ecma.ch/ecma1/
TECHREP/TECHREP.HTM

[12] Arne-Jørgen Berre, An object-oriented framework for systems
integration and interoperability, Phd thesis, University of
Trondheim,1993

[13] CAFÉ � from Concept to Application in system-Family Engineer-
ing http://www.extra.research.philips.com/euprojects/cafe/

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/method-tailored-system-

integration/31844

Related Content

Clique Size and Centrality Metrics for Analysis of Real-World Network Graphs
Natarajan Meghanathan (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

6507-6521).

www.irma-international.org/chapter/clique-size-and-centrality-metrics-for-analysis-of-real-world-network-graphs/184347

A Sentiment Analysis Model Based on Attention Map Convolutional Network
Wanjun Changand Shaohui Ma (2024). International Journal of Information Technologies and Systems

Approach (pp. 1-16).

www.irma-international.org/article/a-sentiment-analysis-model-based-on-attention-map-convolutional-network/348658

Researching IT Capabilities and Resources: An Integrative Theory of Dynamic Capabilities and

Institutional Commitments
Tom Butlerand Ciaran Murphy (2009). Handbook of Research on Contemporary Theoretical Models in

Information Systems (pp. 348-362).

www.irma-international.org/chapter/researching-capabilities-resources/35840

On Bias-Variance Analysis for Probabilistic Logic Models
Huma Lodhi (2010). Breakthrough Discoveries in Information Technology Research: Advancing Trends

(pp. 225-236).

www.irma-international.org/chapter/bias-variance-analysis-probabilistic-logic/39584

Aspect-Oriented Programming
Vladimir O. Safonov (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 7037-

7045).

www.irma-international.org/chapter/aspect-oriented-programming/112402

http://www.igi-global.com/proceeding-paper/method-tailored-system-integration/31844
http://www.igi-global.com/proceeding-paper/method-tailored-system-integration/31844
http://www.irma-international.org/chapter/clique-size-and-centrality-metrics-for-analysis-of-real-world-network-graphs/184347
http://www.irma-international.org/article/a-sentiment-analysis-model-based-on-attention-map-convolutional-network/348658
http://www.irma-international.org/chapter/researching-capabilities-resources/35840
http://www.irma-international.org/chapter/bias-variance-analysis-probabilistic-logic/39584
http://www.irma-international.org/chapter/aspect-oriented-programming/112402

