
Issues and Trends of IT Management in Contemporary Organizations 771

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

INTRODUCTION
Recent costly space launch failures and difficulties with on-orbit

operation have highlighted the fact that space system architecture
designs are becoming increasingly complex to analyze. This complex-
ity stems from the desire to increase program functionality, improve
current performance, and seek greater program success within tighter
cost/schedule constraints. Additionally, embedded spacecraft software
architectures often require support for complex single and multi-satel-
lite protocols, may utilize object-oriented designs and technologies
whose performance and maintenance costs may be uncertain, and
require the use of custom hardware, often only available after the
software has been architected. This increased complexity creates sig-
nificant program risk. The current procedure of manual inspection of
hardcopy Unified Modeling Language (UML) software architecture
designs is ineffective and inefficient in finding subtle design flaws.
This is true for large ground systems as well as embedded system archi-
tectures where it is increasingly difficult to make technical tradeoff
decisions based 1solely on qualitative judgments by integrated product
teams. The current post-design, code-centric testing approach to
problem resolution is also costly. Little or no coordination between
architectural analysts and software evaluators involved in independent
readiness reviews is practiced today. The result has been an increased
risk in flawed/incomplete architectural designs leading to flawed/in-
compatible implementations, and possible “sleeper” design flaws that
result in costly on-board failures. The Real-time Embedded Architec-
ture-Centric Testbed (REACT) facility was created to reduce program
risk by early identification and resolution of software architectural
shortfalls.

This paper discusses the design goals and some lessons learned
from using our REACT facility. Section 2 describes some of the
challenges that we faced in developing a REACT environment. Sec-
tion 3 describes REACT’s architectural framework, and the technical
approaches to address those challenges. Section 4 provides an ex-
ample of how REACT has been used to perform architectural analysis.
An actual satellite communication protocol model developed in UML
is used with a multi-satellite, multi-terminal communication model.
To illustrate REACT’s capabilities, a subtle design flaw in the UML was
introduced. This error would have been extremely difficult to find
from manual inspection of UML output. The paper describes REACT’s
capability to automatically extract architectural information, gener-
ate an executable model configuration file, execute the model, analyze
model results, and trace the error back exactly to the particular part of
the architecture in error. It should be noted that REACT analyzes
UML architecture design information—not code, illustrating REACT’s
goal of providing early discovery insight prior to code development.
Section 5 summarizes some of the lessons learned and future directions
for REACT.

REACT CHALLENGES
We faced many challenges when designing REACT:
Contractor-driven Architecture Analysis. REACT’s pur-

pose is to perform architectural system engineering analysis for com-
plex, real-time, embedded satellite control systems. Our problem is

Lessons Learned Using REACT:
An Architectural Evaluation Testbed for

Real-Time Embedded Systems
Phillip Schmidt, Jaime Mistein, Robert Duvall, Jeffrey Lankford and Jesus Rivera

The Aerospace Corporation1, California
unique from UML’s mainstream usage, because our role is independent
analysis of contractor-provided architectural designs, not software
development. Many of the commercial UML tools sold today focus on
developing UML diagrams for use by software developers, not systems
engineers involved in analyzing proposed architectures. Some real-
time commercial UML tools such as Artisan, and Rhapsody support
auto-code generation and simulation support if vendor-specific devel-
opment methodologies are followed, but our experience has been that
contractors select their own UML tools and generally have been un-
willing to relinquish code/design control or commit to proprietary
architecture practices. REACT’s initial design challenge is to design
an open, analysis architecture that would be as UML-vendor indepen-
dent as possible, yet be able to support contractor-provided architec-
tures that often used UML in different ways.

Early Discovery of Architectural Shortfalls. The REACT
environment differs from a classical test-bed approach that debugs a
current, fully specified “end” design. REACT adopts an architecture-
centric, early discovery approach to analyzing and modeling architec-
tural designs prior to code development. REACT assesses how new,
often partially specified, improvements impact a contractor’s pro-
posed software architectural design or legacy architectures already in
use. Examples of REACT activities include: assessing proposed real-
time embedded satellite control architectures, performance impacts of
using demand assignment multiple access communication resource as-
signments with highly constrained embedded processors, investigating
software architectural revisions that improve the allocation of
configurable resources, investigating ways to improve dynamic
reconfigurability through the use of component-based architectural
design, and tracking OMG’s on-going efforts of evolving UML for
real-time. Contractor preliminary design specifications are often in-
complete and immature making it difficult to understand the proposed
software architecture. The benefits of proposed improvements are
also often not well understood. Formal architectural models may not
exist in electronic media. Legacy systems may have been developed
prior to the architectural representational languages such as UML.

Management of architectural augmentation. Because not
all architectural details are provided via UML, we needed to develop
techniques to augment UML models with auxiliary information. For
example, much of the platform specific information such as CPU
processing speed, memory size, bus data rates, operating system con-
text switch times, etc., is needed but does not change frequently.
Oftentimes, providing this augmented information is labor intensive.
We need to distinguish between contractor-provided information and
specially provided augmentations. Additionally, to reduce program
risk, large system development often follows a spiral development
process model in which design and code are released in phases. To
support the spiral development and the fact that architectural infor-
mation could and would change over several phases, we needed to
develop a strategy to recognize and appropriately reuse augmented
architectural information.

Static Architectural Analysis. Once the architectural UML
information is extracted, REACT can provide customized static archi-
tectural analysis to ensure the integrity of the model prior to generat-
ing an executable model file. This analysis can include syntactical

701 E. Chocolate Avenue, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP4300
IDEA GROUP PUBLISHING

772 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc

analysis based upon standard UML usage as well as contractor-specific
adaptations. A collection of such semantic analyses could also be de-
fined. For example, if a method raises an exception, there should be
something that receives it. Improper semantic use of UML notation
could also be identified.

Multi-grained modeling. A wide spectrum of modeling and
analysis tools are needed that can start with incomplete specifications
and permit rapid simulation and assessment. Initial assessment may
utilize coarse-grained models at the component level, but must even-
tually support finer grained models that address object-level perfor-
mance level threads. Since detailed state machines may not be avail-
able, the ability to auto-derive functional flow state machines from
sequence diagrams is highly desirable.

Model Reparameterization. Initially some of the processing
values for various parts of the UML model will be estimated from early
contractor-provided data, legacy information, or system-engineering
judgment. Early assessments of different workload models will need to
be revisited as the architecture gains more fidelity. We recognize the
importance of an improved relationship with independent readiness
engineers that measure and evaluate delivered code. REACT’s early
analysis will identify potential hot spots (areas where performance
may be in doubt) and soft spots (areas where preliminary analysis may
need recalibration).

Configurable infrastructure for highly adaptive architec-
tures. As we rely on real-time embedded systems that exercise more
demanding processing functions within hostile space systems environ-
ments, there is an evolutionary trend to reduce the risk of mission
failure by enabling the software architectures to be more responsive to
unexpected circumstances. These architectures introduce new dy-
namic operational strategies that need to be evaluated and understood.
Also contractors frequently adopt proprietary real-time operating sys-
tems with support tools that also utilize proprietary communication
protocols to capture and analyze collected data. Often these tools
operate standalone and do not have effective means to be rapidly
configured to exercise multiple scenarios such as those involving dis-
tributed multiple satellite configurations. This environment makes it
difficult to analyze the effectiveness of highly adaptive complex ar-
chitectures in which internal state conditions determined at runtime
can dynamically influence the exercise. For such an environment to
be successful, a highly configurable support infrastructure is needed to
capture critical real-time events and properly integrate them into a
controlling simulation.

Figure 1: REACT design

REACT DESIGN
REACT’s design structure is illustrated in Figure 1. Components

currently under development are shown in italics. REACT’s compo-
nents are entirely written in Java 1.2 and Swing support.

REACT adopts a new architecture-centric, early discovery ap-
proach to analyzing and modeling architecture designs prior to code
development. Contractor-provided architecture artifacts are typi-
cally UML class, sequence, and state diagrams, but other non-UML
data (e.g. spreadsheet models, design studies, task configurations etc.)
may also be provided. We take the UML and using specially developed
tags and primitives [2], augment any additional architecture informa-
tion via a commercial UML tool or a REACT data entry Graphical
User Interface (GUI) (e.g. platform specific information). For ex-
ample, to characterize a timer event with a default timeout of 55ms
and an event priority of 10, a special augmentation tag with value
event would be defined that provides additional tags for event.type,
event.priority, event.timeoutunits, and event.timeoutval to be defined
and associated with the appropriate class diagram representing the
event. It is important to know the heritage of the data represented
internally within REACT. REACT manages this through the concepts
of coloring and safety. REACT identifies (or colors) internal repre-
sentation data in three ways. The representations are colored black,
red, or green to describe original, augmentation, or original containing
augmentation data respectively. Augmentations can be safe or unsafe.
Unsafe augmentations change the original architecture intent. E.g.
new operators added to classes, changing the operator signature, add-
ing new attributes to a class, changing an operator’s persistence type
are all examples of unsafe changes. Unsafe augmentations may be
intentional if it is desired to explore impacts to alternative architec-
tural approaches. REACT’s internal representation can always distin-
guish these differences. In addition, the architectural reference from
which augmented data was obtained is also recorded. This is needed not
only to identify where parameterized values were obtained, but also to
assist in reparameterizing those values when recalibration is necessary.

Once a UML augmentation is completed, an XMI (XML Metadata
Interchange) export of the UML model is provided to the REACT
Extractor that extracts the architectural information and builds
REACT’s XML-based, internal representation. REACT’s automated
techniques to perform consistency and integrity checks of architec-
tural information improve architectural confidence, an important in-
dependent readiness review goal. We are currently refining REACT’s
internal representation to support auto-generation of interaction-based

state diagrams from sequence dia-
grams. The internal representation is
used by the Model Generator to gen-
erate appropriate configuration files
that are input to executable Java com-
ponents (called actors) in the Model
Executor. The Model Executor is
Ptolemy, a Java simulation tool, de-
veloped at UC Berkeley. [1] Special-
ized Ptolemy actors were developed
to model VxWorks task pre-emption
and event management. Currently we
use a pre-built Ptolemy model that
represents the hardware architecture
of our system, but as Ptolemy can
also accept a specialized XML-for-
matted model, called MOML, it is
possible to auto-generate a MOML
file from augmentation data should it
become necessary. Early architectural
assessments that focus on critical ex-
ecution paths are conducted to un-
derstand the logical execution behav-
ior of the proposed system. The abil-
ity to identify inconsistencies, dead-

Issues and Trends of IT Management in Contemporary Organizations 773

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

locks, and architectural performance hot-spots in early design phases
can guide software evaluators in testing whether explicit problems
have been corrected and can suggest detailed parameter measurements
(when code becomes available) to improve architectural models of
later phases, or to reinvestigate prior analysis. The Model Inspector
will exploit the ability to automatically compare as planned to as built
architectures by comparing their different internal representations.
The Model Exporter will permit REACT’s internal representation
(with augmentations) to be exported in an XMI format. Dynamic
assessment will take a user-defined specification of what levels of
accomplishment are to be evaluated and auto-generate the monitors
and evaluations needed. Model Generation will recognize the monitor
augmentation within the internal representation and auto-generate
the appropriate configuration files. The ability to specify and execute
dynamic assessment models is needed to understand how the architec-
ture will function under different (possibly adaptive) scenarios. REACT’s
novel capabilities provide technical assurances for independent readi-
ness review teams in areas that have not been well addressed.

REACT EXAMPLE
Figure 2 shows an example of how REACT has been used to

perform architectural analysis. A multi-satellite, multi-terminal com-
munication Ptolemy model is shown in the upper left corner. The
model is hierarchical and contains several levels not shown. The ter-
minal model will generate two specialized types of messages when the
model representing the software architecture, communicates with the
satellite. The satellite will interpret and route the messages to the
appropriate destination. These message types are identified in the
right side of Figure 2 by the message spikes of different heights. Graphs
for terminal 1, satellite 1, terminal 2, and satellite 2 are shown. This
model executes a selected subset of an actual satellite communication
protocol. The communication protocol model was based upon UML,
which is the principal way in which contractors provide architecture
design information. An integrated product team (IPT) studying a
proposed enhancement motivated this particular model. The IPT,
however, did not perform any quantitative analysis and thought the
enhancement would only require the satellite to “clean up some code.”
The UML model was based on interface requirements, specifications,
and other architectural artifacts. To illustrate REACT’s capabilities, a
subtle design flaw in the UML was introduced simulating an inconsis-
tent ground system contractor’s algorithm with the satellite contractor’s

Figure 2: REACT analysis example

“clean-up” algorithm. This error would have been extremely difficult
to find from manual inspection of UML output. UML models for the
ground system and the satellite system were developed in Rose and
exported into XMI. REACT’s Extractor created the internal architec-
tural representation and the Model Generator produced the configura-
tion files. A sample portion of Model Generator’s XML output for the
satellite’s UML is shown in Figure 3.

Figure 3: Sample model generator output

When the model was executed, a deadlock occurred. This is illus-
trated in Figure 2 by the arrow. The lower left side of Figure 2 shows
a detailed log file that is generated during the model execution. Each
log line is directly traceable to the Rose model state machine. By
inspecting the log file the actual discrepancies between the satellite
and terminal algorithms were found—uncovering the cause of the
deadlock. Inspection of the log files of the other terminals and satel-
lites revealed a similar problem.

LESSONS LEARNED AND FUTURE
DIRECTIONS

In developing REACT and using it to analyze UML architectures
the following lessons were learned:

UML contractor usages and UML vendor implementations
can vary significantly. REACT’s early architectural assessments
found that architectural designs were using UML in unconventional
ways. For example, we found that ROSE permitted self-loop con-
structs on sequence diagrams to indicate local method calls to a se-
quence diagram object. One developer used these self-loops as a way to
provide positional comments. Rose even permitted this. Such a prac-
tice is architecturally intrusive and should be avoided. Other UML
implementation differences were due to weaknesses in the UML 1.3
specification with respect to associating notes in UML and managing
the isActive property. In one case, a UML tool recognized the equiva-
lence between collaboration and sequence diagrams, by providing the
capability to auto-translate from one diagram to another. A side effect
of this auto-translation is that it is not possible to support positional

774 Issues and Trends of IT Management in Contemporary Organizations

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc.

Copyright Idea Group Inc

notes because positional information within a sequence diagram par-
ticipant is not tracked since it is “not used” in a collaboration view. In
another case, language specific features such as Java’s synchronized
was noted in the XMI and accessible via special contextual displays but
was not diagrammatically viewable. Simple support for tagged values
also varied.

Tailored Semantic Architectural Analysis is effective in
finding early errors prior to Model Generation. We initially
developed some UML toy models for REACT to analyze. In one
model we made a semantic error on a state diagram in which a timed
event did not have an exit condition if the event were to timeout. We
were able to semantically check for this condition in the Model Gen-
erator prior to attempting model execution, effectively making the
Model Generator into an architectural compiler. The ability to cus-
tomize the interpretation of specific UML usages is also highly desir-
able during Model Extraction as well, especially when UML is used in
non-conventional ways. In one example, we found early users of UML
technology often found that abstract interface representations were
not available in their UML tools. To compensate for this, package
diagram dependencies were used to represent interface inheritance
relationships. This novel interpretation tended to confuse commer-
cial reverse engineering/import tools even though REACT extraction
could be made to understand contractor-specific UML idioms.

Legacy Architecture Remodeling in UML. We support cus-
tomers with a several large, complex architectures that were designed
prior to UML and have an expected life of several decades. Much of
the architectural information is contained in lengthy specifications.
Also many of the original software designers have retired or are near-
ing retirement. Recently we have suggested that portions of the legacy
architecture protocols undergoing evolution be remodeled into UML
to not only capture the currently deployed architecture, but also per-
mit architectural analysis of the future proposed changes. The recom-
mendation has worked well for us. Our remodeling activities have not
only uncovered architectural inconsistencies, but also identified areas
for improvement.

Electronic Architectural Formats. We hope that REACT’s
architectural analysis success motivates customers to require electronic
delivery of all architectural information. Over time XML data schemas
will be defined to facilitate its organization and use. Initially we thought
requiring XMI as the standard UML exchange format would be a stan-
dard way to begin REACT’s architectural analysis and we have been
modestly successful basing REACT’s extractor on XMI. However,
although XMI support is improving, today, not all UML tools fully
support it, and there are variations in how thoroughly a vendor’s UML
extensions are captured in specialized tags. Until there is better
coordination between UML releases and XMI releases, we recommend
that customers request the full UML model be delivered, create their
own XMI exports, and create vendor-specific extraction only if needed.
Many commercial UML tools provide APIs to extract their propri-
etary information.

A Knowledgebase of Architectural Information. We found
that a large body of contractor provided architecturally detailed infor-
mation is not directly specified within UML. These include sizing and
timing analyses to motivate queues lengths, CPU needs, memory allo-
cations, etc. We are currently working on ways to organize this auxil-
iary information to bring it into REACT for analysis. We are investi-
gating data repositories using XML data schemas. Our legacy systems
are quite complex and have evolved into specialized systems in which
few individuals have all thoroughly mastered. The distributed nature
of the knowledgebase requires efficient access to various sources of
contractor and programmatic information.

Improved collaboration with independent readiness re-
view (IRR) teams. Typically IRR teams are given code about to be
deployed and are asked to evaluate its readiness. Because they typi-
cally have not been involved during its design, they often begin their
analysis from scratch. We found that there is a natural synergy be-
tween IRR engineers and REACT’s early assessment engineers because

the early assessors can identify the troubled areas during design and the
IRR engineers can provide more concrete parameterization data to
refine REACT models. We hope others find this approach useful.

REACT, an architecture-centric analysis environment that ex-
tracts, semantically analyzes, represents, and analyzes contractor-
provided architectural information has been presented. REACT devel-
oped UML tags to augment architectural information to enable auto-
mated model generation, and permits the reuse of augmented model
information in subsequent architecture development phases through
Model Export. Improved support for developing model parameteriza-
tion and development of advanced quantitative techniques to support
dynamic assessment of modeled architectures are ongoing. This in-
cludes techniques to specify, monitor, collect, and interpret dynami-
cally acquired assessment data. A long-term plan for REACT is to
develop an environment that can evaluate adaptive execution or plan-
based strategies using rule-based logic or probability belief networks.
Approaches to assess the impact of redesigned/refactored architec-
tures using REACT’s internal representation are also being studied.

ENDNOTE
1 © 2001 The Aerospace Corporation

REFERENCES
[1] Lee, Edward “Ptolemy II - Heterogeneous Concurrent Modeling

and Design in Java.” Edward Lee, et. al. June 2000. Also see http:/
/ptolemy.eecs.berkeley.edu.

[2] Schmidt, Phillip, “REACT UML Extraction, Augmentation and
Modeling Support” (draft July 31, 2001) to be published.

0 more pages are available in the full version of this

document, which may be purchased using the "Add to Cart"

button on the publisher's webpage: www.igi-

global.com/proceeding-paper/lessons-learned-using-

react/31900

Related Content

The Analysis of a Power Information Management System Based on

Machine Learning Algorithm
Daren Li, Jie Shen, Jiarui Daiand Yifan Xia (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/the-analysis-of-a-power-information-management-system-

based-on-machine-learning-algorithm/327003

A RNN-LSTM-Based Predictive Modelling Framework for Stock Market

Prediction Using Technical Indicators
Shruti Mittaland Anubhav Chauhan (2021). International Journal of Rough Sets and

Data Analysis (pp. 1-13).

www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-

market-prediction-using-technical-indicators/288521

IoT Setup for Co-measurement of Water Level and Temperature
Sujaya Das Gupta, M.S. Zambareand A.D. Shaligram (2017). International Journal of

Rough Sets and Data Analysis (pp. 33-54).

www.irma-international.org/article/iot-setup-for-co-measurement-of-water-level-and-

temperature/182290

Crisis Response and Management
Sergey V. Zykov (2018). Encyclopedia of Information Science and Technology,

Fourth Edition (pp. 1396-1406).

www.irma-international.org/chapter/crisis-response-and-management/183854

http://www.igi-global.com/proceeding-paper/lessons-learned-using-react/31900
http://www.igi-global.com/proceeding-paper/lessons-learned-using-react/31900
http://www.igi-global.com/proceeding-paper/lessons-learned-using-react/31900
http://www.irma-international.org/article/the-analysis-of-a-power-information-management-system-based-on-machine-learning-algorithm/327003
http://www.irma-international.org/article/the-analysis-of-a-power-information-management-system-based-on-machine-learning-algorithm/327003
http://www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-market-prediction-using-technical-indicators/288521
http://www.irma-international.org/article/a-rnn-lstm-based-predictive-modelling-framework-for-stock-market-prediction-using-technical-indicators/288521
http://www.irma-international.org/article/iot-setup-for-co-measurement-of-water-level-and-temperature/182290
http://www.irma-international.org/article/iot-setup-for-co-measurement-of-water-level-and-temperature/182290
http://www.irma-international.org/chapter/crisis-response-and-management/183854

Maintenance Policies Optimization of Medical Equipment in a Health Care

Organization
Juan Ignacio Roig, Andrés Gómez, Isabel Romeroand María Carmen Carnero

(2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

3698-3710).

www.irma-international.org/chapter/maintenance-policies-optimization-of-medical-equipment-in-

a-health-care-organization/184079

http://www.irma-international.org/chapter/maintenance-policies-optimization-of-medical-equipment-in-a-health-care-organization/184079
http://www.irma-international.org/chapter/maintenance-policies-optimization-of-medical-equipment-in-a-health-care-organization/184079

