
20 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
Our project deals with the reuse of existent urban models into an
interconnection schema. An urban model is a specialised tool for
simulating or estimating phenomena about the city. Using a specific
technique of encapsulation, with a semi-automatic generation of
communication drivers, the proposed environment offers a homogeneous
view of the urban models, which may be used into a distributed environment.
In this paper, we present the global distributed architecture, created with
Java, and the chosen representation of the interconnection schema,
explaining how this particular approach is well dedicated to manage the
distributed urban models. This paper shows the advantage offered by the
XML syntax to represent meta-data and specific data, and by a strong
hierarchical management.

I. INTEGRATION OF URBAN MODELS
Urban models are specialised software tools, responding to a spe-

cific modelling or simulating goal. They simulate specific phenomena
of the city and are a reliable decision-support for urban planners and
decision-makers. The urban models are used for simulation and for esti-
mation, they are in general finished products, used by experts and which
answer to the pursued objectives. However, there is no standardisation
of the models and no standard formats for their inputs and their outputs.

It may be interesting to inter-connect several models to profit from
their specialities and thus to allow new experiments. For example, it is
mainly a question of using the result of a model for the execution of
another.

An interconnection of models defines a new complex model using
existing models following a graph of interconnections (Figure 1).

The existing urban models are not developed to be interconnected,
because they are finished software packages. Generally, users execute
urban model without knowing exactly how it works. In contrast, to
integrate a model into a global environment, it must be well known, in
relevance with the domain, here the urban universe, and it must be
homogeneous.

We can distinguish different of urban models:
• the class, which are models constructed like a class or like an API and

easily usable,
• the procedures that may be controlled with batch files, through OLE/

DCOM or CORBA, through sockets, ... , these models are not easily
usable in any context but are built to be used,

• the complete programs, which are not built to be interconnected or
used by an automatic way. These programs are very difficult to inte-
grate.

The crystal box approach and the black box approach are two
specific ways to deal with the integration of these models. The crystal
box solution is based on a high level definition of the model, sufficient
to design the model. This definition may be viewed as a program in a
high level language or as a meta-model, a meta-data on the model.

The black box approach considers that the models exist and that
the way to process is not or badly known. It is possible to federate the
models or encapsulate them. Into a federation (DMSO, 97), the model
must have a standard interface and is only integrated by the compliance
to the interface syntax, just like the object into CORBA (Object Man-
agement Group, 01), which have to define an IDL. But this solution
implies to write or to rewrite the models to conform to this syntax.

Our final objective is to provide a workshop of composition of
models. Thus, a “final” user will be able to use models of the workshop
and to connect them between them to test. On the other hand, an
expert user should also be able to integrate one or more models in the
workshop.

To use existing models without changing them, we may encapsu-
late them. The encapsulation controls the model and is used as a homo-
geneous model (Becam, 00). An architecture allowing the interoperability
of distributed models was proposed in (Becam, 01). In this paper, we
focus on the interconnection of distributed models in order to define
new super-models. We propose meta-models with a logical view of mod-

Managing the Interconnection
and the Distribution of Urban Models

with XML and Distributed Objects
Alain Becam1, Maryvonne Miquel2, Robert Laurini3

INSA of Lyon – LIRIS (ex-LISI),
20, avenue Albert Einstein
F69621 Villeurbanne Cedex

1abecam@lisi.insa-lyon.fr, 2miquel@if.insa-lyon.fr,
3laurini@lisi.insa-lyon.fr

Figure 1: A schematic representation of our goal: (1) to allow the standard
use of different models and their interconnection for an user, and (2) to
offer to an expert the possibility to integrate an existing model into the
environment

Model
Catalogue

A
Public Health

B
Pollution of Air

D
Noise

C
Urban Trafic

Database

E
Commercial Activities

Models
user

Expert user

(1)

(2)

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 21

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

els allowing the management of the interconnection schema. We first
present the different works about software reuse and components tech-
nologies in section 2. Section 3 explains how to integrate the urban
models in a unified environment using XML. Section 4 proposes solu-
tions for the interconnection management. We conclude in section 5.

2. SOFTWARE REUSE AND DISTRIBUTED
COMPONENTS

The need of software reuse comes from the rapid evolution of the
computer universe. A lot of powerful software tools exist and it is
inefficient and difficult to re-write everything anytime. So, designers
want to create only the original part of their modelling tools, using the
existent tools to deal with the other problems.

The first application of this idea is the shared libraries used into the
modern operating systems. They deal with specific problems and may be
used by several programs simultaneously. Libraries are written to this
specific usage and give the possibility to write smaller application by
avoiding the rewriting of each widely used procedure.

Recently, the different systems have integrated the possibility of
collaboration between different applications, by OLE/DCOM, CORBA
or EJB. Into CORBA (Object Management Group, 01), the software
pieces of code are written respecting a defined interface syntax. They
are usable together, following the designed possibilities. With OLE/DCOM
(Microsoft, 00), the integration is at a binary level and allows the use of
one application into another. The best-known use of OLE/DCOM con-
cerns the Microsoft Office, where it is possible to integrate a document
from one application into the document of another application and to
run the native application by selecting the document.

The Enterprise JavaBeans (EJB) (Sun Microsystems, 01) of Sun
Microsystems manages persistent distributed objects written in Java and
using Java RMI. JINI (Sun Microsystems, 02) is an integrated solution
for management of distributed objects. Because CORBA is well sup-
ported by Java, this last environment is not a closed world.

These different solutions are powerful and efficient. But they need
elements specifically written for this meaning.

Some systems allow to integrate existing software components,
like the DOMIS project (MITRE, 00), which studies the use of OMG
technologies for the reuse of existing components, or like ACE (Schmidt,
02), which offers an environment written in C++ to integrate, via sev-
eral patterns, existing programs with few rewrite effort.

Recently, some systems have been created to deal with the intelli-
gent integration of heterogeneous components. We may name Protégé
(Grosso, 99), which helps users to build tools using knowledge acquisi-
tion, or IBROW3 (Benjamins, 98), which is an intelligent brokering
service on the web, using knowledge components, in fact PSM (prob-
lem-solving methods). A web-based system for the reuse of urban mod-
els has also been proposed in (IAZEOLLA, 98).

Finally, the focus of some projects is to add meta-data, like MOF
(DSTC, 00), which is adapted to CORBA, or like XMI (Object Manage-
ment Group, 99), which is a format of exchange. We may also speak
about SOAP [W3C 01a], which encapsulates some data into a message in
XML [W3C 01b], explaining the possible treatment of these data. The
meta-model may be used to dynamically create the model (Maxwell,
98).

Into our project, we first want to standardize the models to allow
their use as components into a network.

3. IMPLEMENTING META-MODELS USING XML

3.1 Encapsulation of Models
In order to control some heterogeneous heavy pieces of code, we

propose to use these elements just like software components.
Using Java Technology, an encapsulation is used to abstract the

model into a virtual standard object. In order to be usable like an object,
an encapsulation is composed of three specific parts:
• a driver, which accesses to the urban model considering the element is

a peripheral. The driver is composed of a generic Java part linked to a
specific part that is able to access the element. The driver is the

atomic interface between the raw model and the environment. There
is always one driver for one model,

• a spooler, which controls, if needed, the accesses to the driver and uses
a queue to allow the concurrence. The spooler allows a virtual simulta-
neous use of the element, but we still have to deal with the possibilities
of jam. For this problem, the supervisor must verify the execution of
each encapsulation.

• a communication module, which is connected to the environment
using Java RMI, homogeneous, and usable like an object.

The goal of the encapsulation is to give locally a Java object, which
is well integrated into the environment written in Java and which corre-
sponds exactly with the Raw Model.

These objects are then integrated into a distributed environment
using Java RMI, managed by different servers. A unique global server
manages the whole environment. Local servers exist on every computer
of the environment, and manage only their computer and its elements.

This meta-model dedicate the encapsulation to the urban model,
indicating the good driver and giving its parameters. In order to describe
the urban models, a meta-model is written in XML [W3C 01b]. A part of
this meta-model is centralized to the environment to enrich a catalogue
of urban models.

We adopt the XML syntax for three main reasons: the clarity of
XML, the possibilities of process offered by the “tag” approach and the
easiness to document the model following this syntax.

3. 2 The Meta-models
The meta-model is composed of three parts: logical, descriptive,

physical.
The logical part represents the logical view of the model. The

logical part gives the name of the model, describes the different inputs,
outputs and parameters of the model, giving a typological description of
the data, and a possible semantic description. The logical part also
contains a user description of the model and some miscellaneous infor-
mation.

The descriptive part of the model is used to choose a relevant
driver according to the type of the model. The local server builds the
driver using the name given in the descriptive part. A single class with
exactly the name given by the “model_type” must exist (Figure 2). This
class is retrieved and instantiated using the reflection capabilities of
Java.

The physical part depends on the nature of the raw model. It
describes how the driver has to work and how the allowed accesses are
linked with the logical inputs, outputs and parameters described in the
logical part.

Figure 2: The role of the different parts of the meta-model

View of the model

Driver

Raw model

Environment

Logical part

<LOGICAL_PART>
<MODEL_NAME>District Occupation</MODEL_NAME>
<DATA_INPUTS>

<INPUT>
...
</INPUT>

</DATA_INPUTS>
<DATA_OUTPUTS>
...
</DATA_OUTPUTS>
<AUTHOR>Ernest Dupont</AUTHOR>
<DESCRIPTION>...</DESCRIPTION>
<REMARK>...</REMARK>

</LOGICAL_PART>

Descriptive part <MODEL_TYPE>
JNI_C++

</MODEL_TYPE>

<PHYSICAL_PART>
<FUNCTION>

<FUNCTION_NAME>
setMap
</FUNCTION_NAME>
<DATA_INPUTS>

<INPUT>
...

<IS>
MAP
</IS>

</INPUT>
</DATA_INPUTS>
<RETURN>
...
</RETURN>

...
</FUNCTION>

</LOGICAL_PART>

Physical part

22 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

We choose to use a simple hierarchical view to offer human-read-
able meta-files but also to have logical descriptions. Our meta-files are
simple trees.

3. 2 The Catalogue
Before its use, a model is integrated into the environment, the

local server checks the validity of the meta-model, and sends the logical
part to the global server. When the global server receives a logical part
from a local server, it enriches the catalogue by adding this logical part
if the same model does not already exist on another computer and by
always adding the network information about the distant computer.

At the beginning of a session, the local server calls the driver using
the model type described into the meta-model and gives the physical
part to the driver, just by taking the part of the meta-model delimited by
the “physical_part” tags. The physical part always stays into the origi-
nal meta-model file, on the computer running the raw model.

The XML syntax allows a very simple communication by the
“mark-up” characteristic of the language. We always take some entire
parts of a meta-file by isolating the chunk between specific tags.

4. INTERCONNECTION MANAGEMENT

4. 1 The Logical Schema
The logical schema indicates the interconnections between the

different used elements of the environment. These interconnections
are only at a logical level. The element of this schema may be viewed as
asked instances of the different elements of the environment. When
used, the different needed elements are instantiated by the local servers
or by the global server, for the specific elements.

The logical schema is composed of:
• the list of the logical models used, which contains only the different

logical parts of these models,
• the list of the virtual models of the schema: the different instances of

the logical models, the specific models, the GUI models and the
“dummy” models.

• the list of interconnections, described by a link between an output and
an input.

In the logical schema, the supervisor verifies that every input,
output or parameter is linked with another. An input, output or param-
eter may be “needed”, “prohibited” or “optional”. A prohibited input,
output or parameter cannot be linked with another. After this simple
check, the supervisor verifies the consistency of the links following the
typological description and the semantic description.

Then, the logical schema is used to create a session. Using the list
of logical models and the catalogue of models, the global server com-
mands the creation of the needed encapsulations to the corresponding
local servers. If a local server does not respond, the supervisor tries to
choose another computer, if the needed model is present on different
computers. When each encapsulation is created, the supervisor creates
its particular models and begins the execution of the session.

4.2 Structure Definition
The different meta-data files of the proposed environment are

strongly interdependent. In particular, the logical part is used into the
meta-model, the catalogue and the different schemas. We use DTD
(Document Type Definition) in order to define the structure of our
XML document and to easily describe how our different files are defined.

The logical part is described into only one DTD and the meta-
model, the catalogue and the schema just include one logical part in their
structures. The structure definition of a meta-model is schematised into
figure 3.

4. 3 Use of Meta-files
The supervisor uses the logical schema to command the different

elements, encapsulations and specific models. The default strategy of
execution can be described as follow:

“On start or after an event:
 Step 1. Find each data available at output of models then send them to

the models linked.
 Step 2. Find each data available at input of models.
 Step 3. Search for each model executable: has this model every data

needed?
 Step 4. Execute each executable model.”

The supervisor updates the logical schema when it receives a mes-
sage. If this message permits a new action, then the supervisor executes
this sequence. Using an internal timer, the supervisor is also able to treat
the schema during the session. The configuration of a session gives a
default execution time for each model. The supervisor uses this default
execution time or, if given, the estimation contained into the meta-
model, to verify the good execution of a model. Without any message
after this execution time, the supervisor considers there is a problem.
This estimation may be updated during the session. And the logical
schema is always updated, with the time of execution, the existence and
position of data...

The supervisor also tries to estimate the quality of data, using the
meta-model information, the duration of the session and builds a sum-
mary of the session.

The proposed environment is already able to run several distrib-
uted models following a logical schema, and using a catalogue. The core
architecture is developed, integrating the java part of the encapsula-
tions, the different servers and the main specific models.

We also develop a graphical user interface, offering an integrated
edition and execution of the schema, allowing a centralized manage-
ment of the distributed models. This interface will offer a strong
interactivity.

5. CONCLUSION
In our project, we propose a realistic solution to integrate several

heterogeneous urban models. This work introduces a catalogue of mod-
els and allows its use in a network domain. This work is a first step
toward an intelligent system for the models reuse. Now our system
integrates a software integration of models with a good logical descrip-
tion, using meta-models, and following a schema of interconnection. In
perspective, we will try to extend our system to offer more automations
and intelligence. It is clear that the global use of models needs a good
knowledge about them, following a well-accepted reference, the ontol-
ogy, to give the model its common sense for each user. This project will
evolve to take care of these considerations.

Figure 3: The structure of the meta-model. The logical part is generic but
may be extended and the physical part depends on the type of the model.

Specific to a type of model

Generic

Information Technology and Organizations 23

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

REFERENCES
Becam, A., Miquel, M., Laurini, R., (September 2000) “A distrib-

uted environment using ontology for the interoperability of urban data
and models, In Geographical Domain & Geographical Informa-
tion systems-EuroConference on the Ontology and Epistemol-
ogy for Spatial Data Standards, GeoInfo 19, La Londe les Maures,
France, 11-15.

Becam, A., Miquel, M., Laurini, R., (2001) “Yehudi: An orches-
trated system for the interoperability of urban data and models,” in
Proceedings of ISCA, PDCS 2001, 14th International Confer-
ence on Parallel and Distributed Computing Systems August,
Dallas, Texas, USA, 8-10.

Benjamins, V. R., Plaza, E., Motta, E., Fensel, D., Studer, R.,
Wielinga, B., Schreiber, G. and Zdrahal, Z., (1998) “IBROW3 - An
intelligent brokering service for knowledge-component reuse on the
World Wide Web. In Proceedings of KAW’98.

MORS Modeling and Simulation HLA Tutorial (June 9, 1997)
http://hla.dmso.mil/papers/mors.html.

The Distributed Systems Technology Centre (DSTC), (2000),
Meta-Object Facility Information (MOF) . http://www.dstc.edu.au/
Research/Projects/MOF/.

Grosso, W. E., Eriksson, H., Fergerson, R. W., Gennari, J. H., Tu, S.
W. & Musen, M. A., (1999), Knowledge Modeling at the Millen-
nium (The Design and Evolution of Protege-2000), Rapport.

Iazeolla, G., D’ambrogio, A., (January 1998), “A web-based envi-
ronment for the reuse of simulation models.” In 1998 SCS Western
MultiConference on Computer Simulation, San Diego, CA, USA.

Maxwell, T., (1998), A Meta-Model Approach to Modular Simu-
lation http://kabir.cbl.uces.edu/SME3/MetaModels.html.

Microsoft, Corp., (2000), COM, Microsoft’s Component Ob-
ject Model http://www.microsoft.com/com/.

MITRE, (2000), Distributed Object Management Integra-
tion System (DOMIS) http://www.mitre.org/technology/domis/.

Object Management Group, Inc., (1999), XML Metadata Inter-
change http://www-4.ibm.com/software/ad/standards/xmi.html.

Object Management Group, Inc., (2001) , CORBA http://
www.corba.org/.

Schmidt , D. C., (2002), The ADAPTIVE Communication Envi-
ronment (ACE). http:// www.cs.wustl.edu/~schmidt/ACE.html

Sun Microsystems, Inc., (2001), Enterprise JavaBeans. http://
java.sun.com/products/ejb/.

Sun Microsystems, Inc., (2002), JINI Technologie. http://
www.jini.org.

World Wide Web Consortium (W3C), (2001), Simple Object
Access Protocol (SOAP) 1.2, W3C Working Draft. http://
www.w3.org/TR/2001/WD-soap12-20010709/.

World Wide Web Consortium (W3C), (2001), Extensible Markup
Language http://www.w3.org/XML/.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/managing-interconnection-distribution-

urban-models/31938

Related Content

Modified Distance Regularized Level Set Segmentation Based Analysis for Kidney Stone

Detection
K. Viswanathand R. Gunasundari (2015). International Journal of Rough Sets and Data Analysis (pp. 24-

41).

www.irma-international.org/article/modified-distance-regularized-level-set-segmentation-based-analysis-for-kidney-stone-

detection/133531

Stories and Histories: Case Study Research (and Beyond) in Information Systems Failures
Darren Dalcher (2004). The Handbook of Information Systems Research (pp. 305-322).

www.irma-international.org/chapter/stories-histories-case-study-research/30355

Nanostructures Cluster Models in Solution: Extension to C, BC2N, and BN Fullerenes, Tubes,

and Cones
Francisco Torrensand Gloria Castellano (2014). Contemporary Advancements in Information Technology

Development in Dynamic Environments (pp. 221-253).

www.irma-international.org/chapter/nanostructures-cluster-models-in-solution/111613

Audio-Visual Speech Emotion Recognition
Oryina Kingsley Akputu, Kah Phooi Sengand Yun Li Lee (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 103-113).

www.irma-international.org/chapter/audio-visual-speech-emotion-recognition/112320

Ecology of Games as a Framework for Analysing E-Government Project Implementation
Shefali Virkar (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 3031-3038).

www.irma-international.org/chapter/ecology-of-games-as-a-framework-for-analysing-e-government-project-

implementation/112728

http://www.igi-global.com/proceeding-paper/managing-interconnection-distribution-urban-models/31938
http://www.igi-global.com/proceeding-paper/managing-interconnection-distribution-urban-models/31938
http://www.irma-international.org/article/modified-distance-regularized-level-set-segmentation-based-analysis-for-kidney-stone-detection/133531
http://www.irma-international.org/article/modified-distance-regularized-level-set-segmentation-based-analysis-for-kidney-stone-detection/133531
http://www.irma-international.org/chapter/stories-histories-case-study-research/30355
http://www.irma-international.org/chapter/nanostructures-cluster-models-in-solution/111613
http://www.irma-international.org/chapter/audio-visual-speech-emotion-recognition/112320
http://www.irma-international.org/chapter/ecology-of-games-as-a-framework-for-analysing-e-government-project-implementation/112728
http://www.irma-international.org/chapter/ecology-of-games-as-a-framework-for-analysing-e-government-project-implementation/112728

