
210 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
This paper describes the functional requirement and architecture of a
software system called Web and Document Databases (WDDBs). A WDDB
is a system to manage efficiently local documents and their semantic
connection to remote ones. The general objective of a WDDB is to facilitate
web search and internet navigation. Abstractly, a WDDB can be defined
as a triple <D, U, W>, where D stands for a local document database to
store XML documents structurally, U for a set of URLs with each pointing
to a remote database which shares common data with the local one, and
W for a Web recognizer that identifies information sources related to data
items in the local database. Then, in the case that a local document
database fails to answer part of a query, it is able to connect to other
databases using the stored URLs to obtain data for answering the query
completely. In this way, surfing of the Internet can be performed more
efficiently.

INTRODUCTION
Recently, with the expansion of the Web, more and more compre-

hensive information repositories can be now visited easily through net-
works. A growing and challenging problem is how to quickly find infor-
mation of interest to an individual in either a home or work setting.
While navigating the Web, one may get lost in the maze of hyperlinks.
A great deal of work has been done to mitigate this problem to some
extent, including search engines such as Lycos, AltaVista, Google and
Yahoo, web query languages such as W3QL [KS95], semistructured data
management systems [Ab97, WL00] and document databases [ACC97,
CA98, CA99a, CA99b, VAB96]. However, these approaches lack a gen-
eral method to bring together all these aspects such as the search engine,
query treatment and document management under one umbrella. In this
paper, we discuss a WDDB system to provide a powerful mechanism to
guide the access of information sources distributed all over the world.

Abstractly, a WDDB can be defined as a triple <D, U, W>, where D
represents a local document database to store XML documents structur-
ally, U represents a set of URLs with each pointing to a remote database
which shares some common data with the local one, and W represents a
Web recognizer that identifies information sources related to data items
in the local database. More concretely, the remote information sources
are established by storing the corresponding URLs, which are distributed
over a pre-defined ontology. As an application scenario, consider a local
database containing all the hotel information (D) in a city. Then, a
query against it may get, for example, hotel prices, hotel living condi-
tions, etc. But a user may also want to know about car rentals, sightseeing
and different cuisine flavors in that city, which may be distributed in
different databases. In this case, one has to switch over to those data-
bases and submit new queries, respectively. However, if some URL links
(U) are available and the relationships between them and the relevant
local data items are specified, the system can manage to access those
remote databases automatically. In addition, to obtain the URLs related
to local data, a Web recognizer (W) is needed to explore the internet to
find information sources of interest. Its other task would be to extract
relevant information from the data obtained by issuing remote queries.

SYSTEM ARCHITECTURE
In terms of the discussion conducted in the introduction, we have

the following system architecture for a WDDB.

The system contains mainly three parts with each for a special
functionality.

Part I - document management.
This part manages a local document database as an information

source reachable over the network. Mainly, it contains:
1. A module for the schema management and the document loading.

This module establishes a data schema for a given XML DTD and
loads the corresponding documents into the database.

2. A module for query evaluation and
3. An interface that can be utilized for users to interact with the system.

Part II - web connection.
This part is used to connect to remote document databases distrib-

uted over the internet. For this purpose, it contains:
4. A module for web connection. In a local WDDB, a set of URLs is

maintained and distributed over an ontology (see Section 4 for the
definition of an ontology). That is, each concept (or a pattern) in the
ontology is associated with a set of URLs pointing to remote docu-
ment databases, which are related to the concept in some way. For
example, for the ‘car rental’, we may have several URLs that are the
addresses of some document databases containing the information on
car rental enterprises. Therefore, a query involving a concept not
available in the local resource can be sent to the associated remote
document databases to get data for answering the query.

Part III - web recognizer.
The third part is used to recognize remote information sources for

a given concept. It mainly contains:
5. A module for web recognition, which can be done by establishing

several patterns for a concept. These patterns can be utilized to find
those document databases that contain XML pages matching any of
them.

From the above system architecture, it can be seen that a WDDB
always works together with some other document databases distributed
over the network. All the relevant document databases are considered to
be semantically connected through URLs, which are associated with a
concept or a pattern in some ontology defined in the local WDDB. Fig.
2 illustrates such a connection of WDDBs through URLs.

On the Web and Document Databases
Yangjun Chen and Ron McFadyen

Dept. Business Computing, University of Winnipeg
515 Portage Ave., Winnipeg, Manitoba, Canada R3B 2E9

{ychen2, r.mcfadyen}@uwinnipeg.ca

Fig. 1. Architecture of a Web database

Interface

Schema

Doc. loading

Query
evaluation

DTDs
Web connection

Web recognizer

Doc. database
��������	
	���

������	��

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 211

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

STORAGE OF DOCUMENTS AND QUERY EVALUATION
In a WDDB, documents are stored in a document database in XML

format. It may be connected to remote document databases through
URLs. In this section, we mainly discuss the storage of XML documents
and query evaluation in a WDDB. The discussion on database connec-
tion is postponed to the next section.

Storage of documents in a WDDB
An XML document is defined as having elements and attributes

[DD94]. Elements are always marked up with tags; and an element may
be associated with several attributes to identify domain-specific infor-
mation. XML processors (or parsers) guarantee that XML documents
stored in databases follow tagging rules prescribed in XML or conform
to a DTD (Document Type Descriptor). Generally, an XML document
can be represented as a tree, and node types in the tree are of three
kinds: Element, Attribute and Text. These node types are equivalent to
the node types in XSL [W3C98b] data model. There are some other less
important node types such as comments, processing instructions, etc.
The treatment of those node types is trivial and thus will not be dis-
cussed here.
- Node type of Element has an element name as the label. Each Ele-

ment node has zero or more child nodes. The type of each child node
is of one of the three types (Element, Attribute and Text).

- Nodes of type Attribute have an attribute name and an attribute value
as a label. Attribute nodes have no child nodes. If there are multiple
appearances of attributes, the order of the attributes will be ignored
since the attribute order is normally not important for the document
treatment.

- Nodes of type Text have strings as labels. Text nodes have no child
nodes.

In Fig. 3(b), we show the tree structure representing the XML
document shown in Fig. 3(a).

In Fig. 3(b), “#PCDATA” represents a data type which is more or
less comparable to strings, used to accommodate text data.

To store documents in databases efficiently, the policies shown
below should be followed:
- (DTD independent) Database schemas to store XML documents should

not depend on DTDs or element types. Any XML document can be
manipulated, based on the predefined relations.

- (no loss of structural information) The structure of a document stored
in the database should be implemented in some way and can be ma-
nipulated.

- (easy maintenance) The cost of the main ten ace of the document
structure should be kept minimum. Any update to a document will not
cause the storage changes of other documents.

To reach above goals, we decompose a document into a set of
elements and distribute them over three relations named: Element, Text
and Attribute, respectively.

The relation Element has the following structure:

{DocID: <integer>, ID: <integer>, Ename: <string>, parentID: <inte-
ger>}.

Where DocID represents the document identifier, ID represents
the element identifier, Ename is the element name (or tag name) and
parentID is the pointer to the element’s parent.

For example, the document given in Fig. 3(a) may be stored in this
table as shown below.

 URLs w.r.t. some WDDBs

a WDDB

Fig. 2. Illustration of the distribution of WDDBs over network

Fig. 3. A simple document and its tree representation (a. and b.)

<h o te l- ro o m -re serv a tio n fi l ec o d =” 1 3 0 2 ”>
< n am e> T rav e l-lo d eg < /n a m e>

< n u m b er> 5 0 0 < /n u m b e r>

< lo c at io n >
<c i ty - o r-d i s t rict> W in n ip e g </ci ty -o r -d i s tr ic t>
<s tate >M a n ito b a </s tate>

</ re s erv a t io n - tim e>

< / lo c atio n >

< /h o te l -ro o m -r eser v at io n >

<c o u n try >C a n ad a< /co u n t ry >
<a d d re ss >

< s t ree t>P o rtag e A v e.</s t ree t>
< p o s t-co d e >R 3 B 2 E 9 < /p o st - co d e>

</a d d res s >

< ty p e>
<r o o ms > o n e- b ed -r o o m < /ro o m >
<p r ic e> $ 1 1 9 .0 0 < /p r ic e>

< / ty p e >
< re se rv a tio n -t im e>

<f ro m >A p ril 2 0 , 2 0 0 2 < /f ro m >
<to > A p ri l 2 8 , 2 0 0 2 < / to >

(a)

 letter

name location type reservation-time

#PCDATA

#PCDATA

filcode=”9302”

Element Text Attribut

city-or-
district

state country address rooms price

#PCDATA
#PCDATA

#PCDATA

#PCDATA

from to

#PCDATA

#PCDATA
#PCDATA

#PCDATA

#PCDATA

number

street

post-
code

(b)

From the following table, we can see that the tree structure is
implemented through the “parentID” in the relation “Element”, which
contains pointers from child nodes to their parent. Together with the
technique of path signatures to be discussed in the next section, it is
especially effective for the evaluation of path-oriented queries since it
is quite often to check a path bottom-up after a signature matching
succeeds. But it suffers from a serious performance problem when a top-
down search is desired. This can be solved as follows.

We traverse a tree structure T in preorder. Then, each node v in T
will obtain a number pre(v) to record the order in which the nodes of the
tree are visited. In a similar way, by traversing T in postorder, each node
v will get another number post(v). These two numbers can be used to
characterize the ancestor-descendant relationships of nodes as shown
below.

Proposition 1. Let v and v’ be two nodes of a tree T. Then, v’ is a
descendant of v iff pre(v’) > pre(v) and post(v’) < post(v).

Proof. See [Kn73].
If v’ is a descendant of v, then we know that pre(v’) > pre(v)

according to the preorder search. Now we assume that post(v’) > post(v).
Then, according to the postorder search, either v’ is in some subtree on
the right side of v, or v is in the subtree rooted at v’, which contradicts
the fact that v’ is a descendant of v. Therefore, post(v’) must be less than
post(v).

The following example helps for illustration.

212 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Example 1. See the pairs associated with the nodes of the directed
tree shown in Fig. 4. The first element of each pair is the preorder
number of the corresponding node and the second is its postorder num-
ber. Using such labels, the ancestor-descendant relationships of nodes
can be easily checked.

For instance, by checking the label associated with b against the
label for f, we know that b is an ancestor of f in terms of Proposition 1.
We can also see that since the pairs associated with g and c do not satisfy
the condition given in Proposition 1, g must not be an ancestor of c and
vice versa.

To identify the parent-child relation, we associate each node with
a level number. The root has the level number 0. All the children of the
root have the level number 1, and so on. Then, if node x is the ancestor
of y and at the same time l(x) = l(y) -1 (l(x) stands for the level number
of x), we know that x is the parent of y. According the above analysis, if
the top-down search of a document tree is necessary, we extend the
relation schema for Element to the following form:

{DocID: <integer>, ID: <integer>, Ename: <string>, parentID: <inte-
ger>, Level: <integer>, Pre: <integer>, Post: <integer>},

where Pre and Post are use to accommodate the preorder and
postorder numbers, respectively; and Level is used for level numbers.

The relation Text has a more simple structure:

{DocID: <integer>, parentID: <integer>, value: <string>},

where “parentID” is for the identifiers of elements (stored in rela-
tion “Element”) which have the corresponding text values in the origi-
nal document. One should notice that a text takes always an element as
the parent node. See the table for illustration.

The relation Attribute has the following structure:

{DocID: <integer>, parentID: <integer>, att-name: <string>, att-value:
<string>}.

As with the relation “Text”, “parentID” is for the identifiers of
elements (stored in relation “Element”), in which the corresponding
attribute appears. The following table helps for a better understanding.

Query evaluation in a WDDB
In a WDDB, a query evaluation comprises two processes: a local

query evaluation and a remote query evaluation. When a query is sub-
mitted to the system, it will be determined which part can be handled
locally and which part has to be evaluated through the internet access.
As an example, consider the following query in YATL format [CCS00]:

Query
MAKE

result
[*hotel-and-car-rental
[hotel[$s], car-rental[$t]]

MATCH docDB WITH
hotel-room-reservation

[*name[$s]
[location[$x]
[type[$y]] ...

car-rental
[*company[$t]

[location[$x]
[car-type[$z]] ...]

WHERE $x = ‘Winnipeg’ and $y = ‘non smoking’

The above YATL query consists of a MAKE, a MATCH and a
WHERE clause. The MATCH clause creates variable bindings by per-
forming pattern matching. Hence, it contains a textual representation
of a tree pattern with labeled nodes and edges. The node labels are built
by XML elements (denoted by the element label, such as ‘name’, ‘loca-
tion’, ‘type’, and so on), XML attributes (denoted by a @) and variables
(denoted by a ‘$’). If a subpattern should occur several times, the inci-
dent edge is labeled with a ‘*’. The WHERE clause filters the matching
results and the MAKE clause reconstructs the results according to the
structure specified in it.

������	�

�����
 ��
 �����
 �����	��

�
 �
 ��	���������������	���
 �

�
 �
 ����
 �

�
 �
 ����	���
 �

�
 �
 �	�����
��	���	
 �

�
 !
 "	�	�
 �

�
 #
 ���	��
 �

�
 $
 %

����
 �

�
 &
 ���'��
 $

�
 (
 "	���	
 $

�
 �)
 *��	���
�
 $

�
 ��
 +���
 �

�
 ��
 ,����
 ��

�
 ��
 *����
 ��

�
 ��
 ,������	����	���
 �

�
 �!
 -���
 ��

�
 �#
 +�
 ��

Fig. 4. Labeling a tree

a

b g h

c e

f

(3 , 1)

(5 , 2)

(4 , 3)

(2 , 4) (6 , 5)
(7 , 6)

(1 , 7)

+�.	�

�����
 �����	��
 �����

�
 �
 +��������
/�

�
 �
 0������/

�
 !
 1���	�'�

�
 #
 ���
�

�
 &
 !))

�
 (
 *��	�/�
%��2

�
 �)
 ,�3
��(

�
 ��
 4���'�
�����

�
 ��
 5��(2))

�
 �!
 %����
�)6
�))�

�
 �#
 %����
�&6
�))�

%		��'�	��

�����
 �����	��
 %		�����
 %		������

�
 �
 -�����
�
 ��)�

Information Technology and Organizations 213

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The tree pattern of the above MATCH clause describes a <hotel-
room-reservation> and a <car-rental> element. The former contains
several <name> elements, a <location> and a <type> element. The
latter contains several <company> elements, a <location> and a <car-
type>. Then, by evaluating this query, we’ll get some hotel names lo-
cated in Winnipeg, which have non-smoking rooms; and some car rental
enterprises in Winnipeg as well as the car types that can be rented.

Assume that the local document database can answer the first part
of the query. That is, it can provide the information on hotel room
reservations, but fail to inform on car rentals. In this case, the system
will send the second part of the query to the document databases pointed
to by some URLs, which contain the information on the ‘car rental’. If
one of the remote document databases is able to evaluate the query on
car rentals, the answer will be sent back to the local WDDB, contribut-
ing to a complete answer to the original query.

A remote query can be of the form: <URL><query>. For instance,
assume that there is a remote WDDB with the URL: http:://
www.uwinnipeg.ca/docDB, which contains the data on car-rental. The
local database will issue a request of the following form to get the second
part of the answer to the above query.

http:://www.uwinnipeg.ca/docDB?name=$t?location=$x?car-
type=$z.

The problem is how to determine where to send a remote query. In
the next section, we will discuss how a local WDDB becomes aware of
other document databases and know what they have.

WEB CONNECTION AND WEB RECOGNIZER
In this section, we mainly address the database connection. First,

we discuss how the URLs are organized in a local database in 4.1. Then,
in 4.2, we discuss how a remote information source is recognized.

Web connection
As mentioned in the previous section, to evaluate a remote query,

a WDDB has to know where to send that query. This can be done by
maintaining a so-called association list of concepts. Each item of an
association list is a triple of the form: (G, C, S), where G represents an
information unit, e.g., some hotel information in a city, C stands for a
set of URLs connecting to some remote databases containing the rel-
evant information such as car rental in that city, and S is a descriptor of
the relationship between G and C. Assume that the above query contains
only ‘hotel’ part and then the local document database can not answer
the query completely. However, using the corresponding item, say (‘ho-
tel’, {url

1
, url

2
, ..., url

i
}, ‘car rental’) in the association list, the system

can switch over to the document databases pointed to by url
1
, url

2
, ..., url

i

to obtain the information on the car rental.
In an association list, a same concept may appear multiple times

and some concepts are possibly closely related. To handle these issues,
we should organize the association list in a different way. To this end, we
extend the concept of mediators discussed in [Wi92], which is originally
proposed to integrate heterogeneous information sources. Concretely,
A mediator is composed of two parts: an ontology and a set of articula-

tions. An ontology is a pair (T, �), where T is a set of names, or terms,

and � is a subsumption relation over T, i.e., a reflexive and transitive

relation over T. If a and b are two terms of T, we say that a is subsumed

by b if a � b; e.g., Database � Informatics, Canaries � Birds. An

articulation is a set of relationships between the terms of the mediator
and the terms of a local source. Through the articulations, the heteroge-
neity of local databases is suppressed.

For our purpose, a mediator in a WDDB is defined to be a tree
structure and a set of URLs. In the tree structure ℑ, a node v is a pattern
that is used to identify relevant information sources. Similar to T, an
edge from c to d in ℑ represents that the concept represented by c
subsumes the concept by d. Associated with v (a node in ℑ,), we have a
set of URLs pointing to the web pages matching the pattern represented
by v. As an example, consider the tree structure shown in Fig. 5.

Such a tree structure is called an extended ontology (EO for short)
in the sense that a term in an ontology is extended to a more complex
structure, i.e., a pattern to describe the concept more exactly. In an EO,
a pattern is normally a tree to represent an information structure for a
concept (see pattern

3
 in Fig. 5; it is used to recognize the pages for car

rental). In the simplest case, a pattern can be a key word and in this case
an EO is degenerated to an ontology. Such a pattern is used to find pages
relevant to a concept from the internet.

To find the remote information sources related to a concept, we
need a mechanism to recognize web pages. Normally, one can determine
the similarity of two pages in different ways. For instance, one can use
the information retrieval notion of textual similarity [Sal83]. One could
also use data mining techniques to cluster pages into groups that share
meaningful (e.g., [PE98]), and then define pairs of pages within a cluster
to be similar. A third option is to compute textual overlap by counting
the number of chunks of text (e.g., sentences or paragraphs) that pages
share in common [SGM95, SGM96, BGM97, BB99, CSG99]. In all these
schemas, there is a threshold parameter that indicates how close pages
must be to be considered similar (e.g., according to number of shared
words, n-dimensional distance, number of overlapping chunks). This
parameter needs to be empirically adjusted according to the target appli-
cation.

Web recognizer
All the methods mentioned above don’t, however, pay attention

to an important aspect of information: the structure of a page. As we
know, a page in HTML or XML format always consists of a hierarchical
structure, starting with a root element as shown in Fig. 3(a).

Such structure information can be used to speed up page matchings
(since taking the structure of pages into account can limit the search for
similar terms to small parts of a text). A frequently used technique to
explore the similarity of structures is tree matching; but it is too strict
and a similar page may be filtered out undesirably. So we introduce a
more relaxed concept: tree inclusion, which can be defined as follows.

Definition 1 (labeled tree) A tree is called a labeled tree if a
function label from the nodes of the tree to some alphabet is given, or
say each node in the tree is labeled.

Definition 2 (tree inclusion) Let T
1
 and T

2
 be two labeled trees. A

mapping M from the nodes of T
2
 to the nodes of T

1
is an embedding of T

2

into T
1

if it preserves labels and ancestorship. That is, for all nodes u and
v of T

2
, we require that

a) M(u) = M(v) if and only if u = v,
b) label(u) = label(M(u)), and
c) u is an ancestor of v in T

2
 if and only if M(u) is an ancestor of M(v) in

T
1
.

 p a tt ern 1

p a tte rn 2 p a tte rn 3

p a tte rn 7
p a tte rn 6

p a t tern 5

p a t tern 4

p a t t e r n 1 : v e h ic le re n ta l p a t te r n 2 : t r u c k

p a t te r n 3 : c a r

c a r

t y p e

f e a tu r e s

d a t e & t im e

s t a r t

e n d

d a y
d a te

d a y
d a t e

p a t te r n 4 : t ru c k w i t h 4 c y l

.

t i m e

t i m e

.

Fig. 5. Extended ontology

214 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Here, the mapping M can be implemented as a method discussed in
[Sal83] or any method used in [SGM95, SGM96, BGM97, BB99, CSG99].
For example, the XML pages shown in Fig. 6(a) and 6(b) can be repre-
sented as two trees shown in the left and right parts of Fig. 7(a), respec-
tively. If a mapping as shown in Fig. 7(b) can be determined, we know
that the tree shown in the right part of Fig. 7(a) is included in the tree
shown in the left part of Fig. 7(a) (see the dashed lines in the figure). In
this case, we claim that the page shown in Fig. 6(b) is similar to the page
shown in Fig. 6(a).

Note that to get an equation such as ‘M(T
1
.articletitle) =

T
2
.articletitle’, we must check the similarity between ‘On the DTD

Mapping into OO Schemas’ and ‘DTD and OO Schemas’. Similarly, to
get ‘M(T

1
.abstract) = T

2
.abstract’, we have to check the similarity be-

tween ‘database’ and ‘DB’, ‘SGML’ and ‘XML’, and ‘informatics’ and
‘computer science’. We can utilize the technique discussed in [Sal83] to
determine the similarity of T

1
’s abstract and T

2
’s abstract based on the

common words in these two paragraphs.
We note that a node in a tree can be a complex structure. In fact,

it can be a subtree by itself. Therefore, to decide whether two nodes are
matching, we can check their ‘tree inclusion’, leading to a concept of
the so-called recursive tree inclusion, by which the tree inclusion is
utilized recursively. Another important concept is the inclusion degree,
which is used to measure to what extent a tree includes another one.

This is needed to apply the recursive tree inclusion to test similarities.
These two concepts will be discussed in great detail in a paper in prepa-
ration.

CONCLUSION
In this paper, we have discussed the system architecture of a WDDB,

which is composed of three parts: a local document database, a web
connector, and a web recognizer. The local document database can be
considered as an information source reachable through the network. It
can also connect to some other document databases through its web
connector, which maintains a set of URLs. Each URL is related to a
concept or a pattern that specifies the content of the demote database.
The task of the web recognizer is to perform web recognition. It works
as a web wrapper [AMM97, Hs98] but is more powerful in the sense that
it recognizes a web page by checking not only part of the page’s syntac-
tic structure but the whole page with semantics considered. It will asso-
ciate a set of URLs with a concept or a pattern which indicates the
contents of the document databases pointed to by the URLs.

REFERENCES
Ab97 S. Abiteboul, Querying semi-structured data, in Proc. Int’l

Conference on Data Engineering (ICDE), 1997. http://www-
db.stanford.edu/pub/papers/icdt97.semistructured.ps.

ACC97 S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G.
Moerkotte and J. Simeon, “Querying documents in object databases,”
Int. J. on Digital Libraries, Vol. 1, No. 1, Jan. 1997, pp. 5-19.

AMM97 P. Atzeni, G. Mecca and P. Merialdo: Semistructured and
structured data in the web: going back and forth, Proc. of ACM SIGMOD
Workshop on Management of Semi- structured Data (1997), pp. 1-9.

BGM97 A.Z. Broder, S.C. Glassman and M.S. Manasse, Syntactic
clustering of the web, in Proc. of 6th Int. World Wide Web Conference,
April 1997, pp. 391-404.

CA98 Y. Chen, K. Aberer, Layered Index Structures in Docu-
ment Database Systems, Proc. 7th Int. Conference on Information and
Knowledge Management (CIKM), Bethesda, MD, USA: ACM, 1998,
pp. 406-413.

CA99a Y. Chen and K. Aberer, Combining Pat-Trees and Signa-
ture Files for Query Evaluation in Document Databases, in: Proc. of
10th Int. DEXA Conf. on Database and Expert Systems Application,
Florence, Italy: Springer Verlag, Sept. 1999. pp. 473-484.

CA99b Y. Chen and K. Aberer, SGML DataBlade - A Document
Database System, in: Proc. of Int. Symposium on Database Application
in Non-Traditional Environments, Tokyo, Japan, IEEE, Dec. 1999, pp.
37-40.

Ch02 Y. Chen, A New Way to Speed-up Recursion in Rela-
tional Databases, in: Proc. of 13th Information Resources Management
Association Intl. Conference, Seattle, USA, May 19-22, 2002, pp. 356-
360.

CCS00 V. Christophides, S. Cluet and J. Simeon, “On Wrapping
Query Languages and Efficient XML Integration,” in Proc. of the ACM
SIGMOD Conf. on Management of Data, pp. 141-152, 2000.

Co99 Copernic: http://www.copernic.com.
CSG99 Cho, N. Shivakumar, H. Garcia-Molina, “Finding repli-

cated web collections,” http://dbpubs.stafford.edu/pub/1999-64.
DD94 S.J. DeRose and D.D. Durand, “Making Hypermedia Work:

A User’s Guide to HyTime,” Kluwer Academic Publishers, London, 1994.
Gr94 I.S. Graham: HTML-documentation and style guide, http:/

/www.utirc.utoronto.ca/ HTMLdocs/NewHTML/htmlindex.html, 1994.
Hs98 C. Hsu: Initial results on wrapping semistructured web

pages with finite-state transducers and contextual rules, Proc. of AAAI-
98 Workshop on AI and Information Integration (1998), pp. 66-73.

Kn73 D.E. Knuth, The Art of Computer Programming: Sort-
ing and Searching, Addison-Wesley Pub. London, 1973.

Kn99 KnowAll: http://www.worldfree.net.
KS95 D. Konopnicki and O. Shmueli, W3QS: A query system

for the world-wide web, in Proc. of the 21st VLDB Conference, Zurich,
Switzerland, 1995, pp. 54-65.

Le94 T.B. Lee: RFC 1738: Uniform Resource Locators, http:/Fig. 7. Illustration for tree inclusion

(a)

(b)

article article

articletitle articletitle
author

abstract

abstractname
name address

city
province

zip

T1 : T2 :

M(T1 .article) = T2 .article
M(T1 .articletitle) = T2 .articletitle
M(T1 .name) = T2 .name
M(T1 .abstract) = T2 .abstract

 < ar tic le>

< ar tic le titl e> On t h e D T D M ap p i n g in to O O Sc h em a s</ ar ic let itle >
< au t h o r id = ”d a w k in s” >

< n am e>
< fi rst n am e >R ic h ar d </ fir s tn a m e >
< la s tn am e> Da w k in s< /la s tn a m e>

< ad d r e ss>
< ci ty >W i n n ip eg < /c ity >
< p ro v i n ce >M a n ito b a </ p ro v i n ce >
< zi p >R 3 B -2 E 9 < /z ip >

</a d d re ss>
< /au t h or >

< /n a m e>

< ab str a ct> ... d at ab a se ... S G M L .. . in fo r m a tic s .. . < /ab st ra ct >
< /ar tic le >

< ar tic le >
<a rti cle tit le> D T D a n d O O S ch e m a s</ ar ic let itle >
<a u th o r i d =” d aw k in s” >

<n a m e>
<f ir s tn am e> R ic h ar d < /fi rs t n am e >
<la s tn a m e> D aw k in s< /la s tn a m e >

< /a u th o r>
</n a m e >

< ab st ra ct > ... D B . . . X M L .. . c o m p u te r s c ie n ce . .. < /a b s tr a ct>
< /a rti cle >

Fig. 6. Sample XML pages

Information Technology and Organizations 215

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

/www.w3.org/hypertext/ WWW/Addressing/rfc1738.txt, Dec. 1994.
PE98 M. Perkowitz and O. Etzioni, Adaptive web sites: auto-

matically synthesizing web pages, in Proc. of 15th National Conf. on
Computer and Human Interaction (CHI’97), 1997.

Sal83 G. Salton, Introduction to modern information retrieval,
McGraw-Hill, New York, 1983.

SGM95 N. Shivalumar and H. Garcia-Molina, SCAM: a copy de-
tection mechanism for digital documents, in Proc. of 2nd Int. Conf. on
Theory and Practice of Digital Libraries (DL’95), Austin, Texas, June
1995.

SGM96 N. Shivalumar and H. Garcia-Molina, Building a scalable
and accurate copy detection mechanism, in Proc. of 1st Int. Conf. on
Digital Libraries (DL’96), Bethesda, Maryland, March 1996.

Sq99 Squid: http://www.squid-cache.org.
TM01 T. Fiebig and G. Moerkotte, “Algebraic XML Construc-

tion in Natix,” in Proc. of the 2nd Int. Conf. on Web Information Sys-
tems Engineering, pp. 250-259, 2001.

VAB96 M. Volz, K. Aberer and K. Böhm, “Applying a Flexible
OODBMS-IRS_Coupling to Structured Document Handling,” Proc. of
12th Int. Conf. on Data Engineering (ICDE), New Orleans, 1996, pp.
10-19.

W3C98a World Wide Web Consortium, Extensible Markup Lan-
guage (XML) 1.0. http// www.w3.org/TR/1998/REC-xml/19980210,
Febuary 1998.

W3C98b World Wide Web Consortium, Extensible Style Language
(XML) Working Draft, Dec. 1998. http//www.w3.org/TR/1998/WD-
xsl-19981216.

Wi92 G. Wiederhold, “Mediators in the Architecture of Future
Information Systems,” IEEE Computer, 25:38-49, 1992.

WL00 K. Wang and H. Liu, Discovering structural association
of semistructured data, IEEE transaction on knowledge and data engi-
neering, Vol. 12, No. 3, May/June 2000, pp. 353-371.

query evaluation

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/web-document-databases/31990

Related Content

Application of Biogeography-Based Optimization to Antennas and Wireless Communications
Sotirios K. Goudos (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 950-

966).

www.irma-international.org/chapter/application-of-biogeography-based-optimization-to-antennas-and-wireless-

communications/260242

Need for Rethinking Modern Urban Planning Strategies Through Integration of ICTs
Rounaq Basuand Arnab Jana (2018). Encyclopedia of Information Science and Technology, Fourth Edition

(pp. 7843-7855).

www.irma-international.org/chapter/need-for-rethinking-modern-urban-planning-strategies-through-integration-of-

icts/184480

Politics and Ethics and a National Framework to Combat Corruption in Zimbabwe
Tawanda Zinyama (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 1497-

1511).

www.irma-international.org/chapter/politics-and-ethics-and-a-national-framework-to-combat-corruption-in-

zimbabwe/260283

An Agile Project System Dynamics Simulation Model
A. S. White (2014). International Journal of Information Technologies and Systems Approach (pp. 55-79).

www.irma-international.org/article/an-agile-project-system-dynamics-simulation-model/109090

Consistency Is Not Enough in Byzantine Fault Tolerance
Wenbing Zhao (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1238-

1247).

www.irma-international.org/chapter/consistency-is-not-enough-in-byzantine-fault-tolerance/183837

http://www.igi-global.com/proceeding-paper/web-document-databases/31990
http://www.irma-international.org/chapter/application-of-biogeography-based-optimization-to-antennas-and-wireless-communications/260242
http://www.irma-international.org/chapter/application-of-biogeography-based-optimization-to-antennas-and-wireless-communications/260242
http://www.irma-international.org/chapter/need-for-rethinking-modern-urban-planning-strategies-through-integration-of-icts/184480
http://www.irma-international.org/chapter/need-for-rethinking-modern-urban-planning-strategies-through-integration-of-icts/184480
http://www.irma-international.org/chapter/politics-and-ethics-and-a-national-framework-to-combat-corruption-in-zimbabwe/260283
http://www.irma-international.org/chapter/politics-and-ethics-and-a-national-framework-to-combat-corruption-in-zimbabwe/260283
http://www.irma-international.org/article/an-agile-project-system-dynamics-simulation-model/109090
http://www.irma-international.org/chapter/consistency-is-not-enough-in-byzantine-fault-tolerance/183837

