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ABSTRACT
The issue of learning to predict the various specific subjects or categories
to which individual pieces of text belong is central in automatic
classification. The Boosting scheme has been extensively tested and show
an interesting record of success. In this paper we examine its performance
in a well-known database of Medline research documents known as cystic
fibrosis. This database is highly versatile for systematic experimentation.
We empirically demonstrate this approach, discuss its overall usefulness
and scope, and provide a detailed roadmap of further research in the
area.

1. INTRODUCTION
In a general text classification problem, data are available as a set

of pairs ( ){ }, , 1,..., ,i iD x y i n= =  where each x  contains a

collection of text words and y  encodes the correct categorization in

each case. We denote by X  and Y  the spaces to which x  and y
belong. Each document’s raw material typically needs to be prepro-

cessed to yield the summary x  (and hence the space X ). On the other

hand, { }1,...,Y k= , where k  is the number of output categories;

usually 2k > . If each iy  corresponds to a single category in Y  we

are in the single-label or standard case. This paradigm is typically not so
interesting in text categorization due to the inherent overlapping of
output labels. Henceforth, we consider the multilabel case where each

iy  corresponds to a subset of Y . Ordinarily, it is more difficult to

approach this case because of the relative ambiguity in output label
membership: different observers may classify items quite differently.
The cystic fibrosis (CF) database (Shaw et al., 1991) provides an excel-
lent environment for our purposes because several membership criteria
are available. This database is rather flexible in that it can be readily
adapted to formulate a variety of related problems.

In this paper we use this database and analyze the empirical behaviour
and practical suitability of one of the most popular machine learning
algorithms: Boosting.

The organization is as follows. In Sections 2 we outline some basic
aspects of Boosting. Details of the CF database are provided in Section
3. Empirical results are discussed in Section 4. Finally, some conclusions
are drawn in Section 5.

2. BOOSTING
Boosting is a general-purpose technique that has been extensively

analyzed and successfully applied in a variety of flavours (Schapire and

Singer, 1998), (Friedman, Hastie, Tibshirani, 2000), (Denison, 2001).
Boosting is actually one of several methods for creating committees of
rules. Committee-based methods have often been shown to improve
over their single-run counterparts, see e.g. (Breiman, 1996).

A distinctive feature of Boosting is the iterated calling to a basic
weak learner (WL). Each time the WL is invoked, it takes as input

( ),D Ω , where Ω  is a weight distribution over D , and returns a

classifier *:h X Y→ , where *Y  is the WL’s prediction space. The

weight distribution changes over time, with the result that more weight
is put on cases that turned out to be difficult for previous classifiers. The

prediction space *Y  defines the type of search to be performed. In our

case, *Y  may be either Y   itself or kY ℜ=* . The latter choice is

referred to as AdaBoost.MH (Schapire and Singer, 2000); it will be
considered below together with some variants of interest. Note that the

absolute numeric coordinates of ( )h x  directly reflect “predictive

confidence”. The strong classifier H  obtained after T  training rounds

is ( ) ( )∑ =
ℜ∈= T

t

k
t xhxH

1
. A ranking of output labels is thus

defined by the coordinates of H , the largest entries always corre-

sponding to the preferred labels.
Schapire and Singer (2000) have pioneered the use of Boosting

techniques in text categorization. In their BoosTexter software they

restrict attention to classifiers th
 
based on stumps: a single question is

posed about x , namely, whether certain pattern or word-gram e
t
 can be

found, and two different set of values th+
 and 

−
th  are provided. The

strong classifier H thus becomes

( ) ( ) ( )
: :t t

t t
t e x t e x

H x h x h x+ −

∈ ∉
= +∑ ∑ .

The interested reader is referred to Schapire and Singer’s original
paper for all missing details in this abridged introduction.

3. THE CYSTIC FIBROSIS DATABASE
The cystic fibrosis (CF) database provides a nice environment for

systematic comparative experimentation. The output categories in this
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database correspond to questions (queries), and the judgement of four
experts is available on the relevance of each article with regard to each
question. For the complete database (containing 1239 documents ini-
tially), the average number of documents relevant to a category is about
48. After stopword removal, training documents contain 17911 differ-
ent terms in total. The input vectors passed to the learning algorithm
are thus obtained by scanning the document and retaining these terms in
order.

As regards the output ,iy Y⊂  we have begun our research with

a relatively simple criterion. In the CF database, each question jQ
 
is an

output class, 1,...,100j = , and document ix  is linked to question

jQ  via four expert ratings ijlr , 1,..., 4l = , each taking values 0, 1

or 2 from irrelevant to fully relevant. We proceed in two steps: all four

ijlr  are collapsed into a single { }0,1,...,8ij ijll
R r= ∈∑ . Then

we set a threshold ρ  and split according to ij ijM R ρ≡ ≥ . Two

choices for ρ  are considered: 1 and 6. If 6=ρ , then matrix M
becomes sparse and the problem is more like standard classification (a
portion of documents having 0 rows are removed from the analysis in

this case). The average size of the iy  in this case is about 1.4, whereas

for 1=ρ  it jumps to about 4. Two different versions for each value of

ρ  are considered. The first version considers only title, keywords and

abstract, the second adds author names, references and journal where the
article was published. Thus, there are 4 versions of the multilabel prob-

lem in total, which we label as CFρ δ , with 1ρ = , 6 and 1δ =
(less detail), 2. Fixed training and test samples, with 755 and 484 docu-

ments respectively in the 1=ρ  case (485 and 321 for 6=ρ ), were

selected at random once and used systematically for training and evalu-
ation in all runs below.

4. EXPERIMENTAL WORK
In this section we first review the various performance measures

that substantiate our experiment. Then we discuss the different variants
of the software tools that we have tested.

4.1 Performance Measures
Recall that BoosTexter attempts to learn a sensible ranking of

output labels H . There are several ways to probe a given H . The

simplest approach involves the top rank

( ) ( )1arg max j
j kl x H x≤ ≤= , the most confident output label

for document x . Indeed, in BoosTexter the primary performance mea-

sure provided is one-error, the fraction of the time ( )l x y∉  over

the test sample (Schapire and Singer, 2000). These authors also consider
the average rank that must be descended before all true test labels are

checked up, namely, the Average Coverage Rank or ( )ACR x .

4.2 Algorithm Variants
The BoosTexter software has been used. We have considered stan-

dard adaboost.MH as well as the abstaining adaboost.MH and the (dis-

crete) adaboost.MR algorithms. Since the abstaining variant (where all

−
th  are set to 0) nearly always outperforms adaboost.MH in the CF

trials, only results from the last two algorithms will be presented here. It
is convenient to label these algorithms after their BoosTexter codes (R
and L respectively). Abstaining is a frequently considered option in
Boosting algorithms (Cohen and Singer, 1999). For details on
adaboost.MR, see (Schapire and Singer, 1998, 2000); in this case,

( ) 0jH x >  for all j  and x .

BoosTexter builds on the idea of seeking contiguous text patterns

or word-grams te  to guide the optimization process. Besides the type

of learning scheme R or L, we can select independently the length W and

style N of the word-grams te . While we have tested the range W 4≤ ,

it turns out that W 1,2=  yield the best results and are less demanding

computationally, so we analyze them in greater detail below. Further-
more, besides N = ngram, we have also tried the sgram and fgram op-
tions. Sgram allows sparse word-grams such as human#*#disease

(W 3= ), whereas fgram enforces the specified limit W in all te . Again,

for fixed W 2=  sgram is nearly always identical to ngram, so it will not

be considered. On the other hand, fgram is usually much worse than
ngram, so it is not considered either. Hence, we focus on the BoosTexter
variants that we label R-N1, R-N2, L-N1 and L-N2. These refer to the

abstaining or .MR basic engines, N = ngram (fixed) and W 1,2=  re-

spectively.

4.3 Empirical Results
We begin with the one-error measure alone, see Table 1. BoosTexter

seems to have difficulty priming correct labels at the top rank ( )l x .

The abstaining variant R is better than the alternative L, particularly in

the high overlap ( 1ρ = ) case. We also note that, rather surprisingly,

the added flexibility in W 2=  does not mean a clear advantage. As

regards CF versions, note that the richer setting ( 2δ = ) helps sub-

stantially Note also that the sparse case ( 6ρ = ) seems to be harder

for the four variants.

In Table 2, we look at the ACR  measure. We avoid using the

usual mean ACR  because of the long, distorting right tail; order statis-

Table 1. One-error test figures for various database settings (rows)
and algorihtm variants (columns). See text for details.

One-error   

R-N1 R-N2 L-N1 L-N2 

1 1CF  45.9 47.1 56.4 57.5 

1 2CF  42.5 45.0 52.1 50.3 

6 1CF  64.5 62.6 68.1 68.9 

6 2CF  59.2 55.8 62.5 61.8 
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tics provide a more robust picture. In the high overlap ( 1ρ = ) case,

for example, we would need to link each document to the top 20 labels
(out of 100). There is clearly room for improvement in as far as docu-
ments would be retrieved quite often in this case.

5. DISCUSSION
We have investigated one of the most popular machine learning

algorithms in the CF multilabel text categorization problem. A number
of factors concerning the particular BoosTexter design can be distin-
guished. For one thing, stumps may not have enough expressive power
by themselves to effectively separate out the output categories. Stumps
indeed are not recommended in situations where a great deal of the game
is played by predictor interactions (word co-occurrences in our case), see
(Friedman et al., 2000). A natural alternative to stumps are trees of
depth 2 (typically involving 4 terminal nodes).

Another improvement would be the inclusion within the Boosting
approach of the word frequency information. Preliminary results with

Table 2. First and second quartiles of the ACR  distribution over

documents. The notation “2,6” means that in 50% of all documents the
correct labels were among the top 6 labels, whereas in 25% of all
documents the correct labels were among the top 2 labels.

algorithms using this kind of information (SVMs or Bayesian schemes)
show that a given term’s classification relevance appears directly con-
cerned with its turnover rate. This should not mean a substantial in-
crease in complexity and deserve further investigation.
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