
456 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
 n 1992, an empirical “Software Equation” was proposed [2]. The highly
non-linear nature of this equation gives rise to some results that are
contrary to what one would logically expect. The reasons for this are
examined, and an alternative model is proposed.

INTRODUCTION

The Software Equation. Based on data collected from over 4000
software development projects, Putnam and Myers [2] developed an
estimation model relating development effort (E, in person-months,
for example), time (t, in units to agree with those used on E), and lines
of code (L). The equation includes two additional constants that are a
function of the particular development environment. The first is B,
which is a special skills factor that relates to the process and support
structures present in the organization and also to the capabilities re-
quired by the particular program. The second is P, which is a productiv-
ity parameter, characteristic of the people involved in development.
With these definitions, the equation can be stated:

E = [L B1/3/P]3 t-4.

If B and P are combined into a single constant Q = P/B1/3, we can
write:

E = L3/(Q3t4).

Pressman [1, page 171] gives the following example that illus-
trates the nonlinear nature of this model. (Note that Pressman’s use of
the constant P coincides with the Q used above, not with the P as used
by Putnam and Myers.)

“Consider a complex, real-time software project estimated at 33,000
LOC, 12 person-years of effort. If eight people are assigned to the
project team, the project can be completed in approximately 1.3 years.
If, however, we extend the end-date to 1.75 years, the highly nonlinear
nature of the model . . . yields:

E = L3/(P3t4) = ~3.8 person-years

This implies that, by extending the end-date six months, we can
reduce the number of people from eight to four! [sic]”

The result is actually less logically appealing than Pressman indi-
cates. Since the 3.8 is in units of person-years rather than persons, the
actual number of persons required would be 3.8 person-years/1.75 years
= 2.17 persons. This model would then say that if we increase the time
by about 30%, the number of people will be cut to one-fourth of the
number originally required. This is certainly counter-intuitive.

The Root of the Problem. In examining the original derivation
of the model by Putnam and Myers, one discovers the basic assumption
that productivity is proportional to the effort times the time spent (P
= Et). At first glance, this appears to be logical. However, if we
recognize that effort is in units of person-time, then the units on the
productivity P would be person-time2. This would imply from the outset
that if we double the amount of time we spend, we will quadruple the
amount of code we can produce. If one begins with the assumption that

code production is non-linear in time, then it naturally follows that the
model will also be non-linear, and will produce the kind of results illus-
trated above.

A NEW MODEL

The First Approach. A more reasonable model would begin from
the assumption that the productivity, in lines of code, would be related
to effort by:

LOC = kNt

where N is the number of people involved in the development, t is the
time spent, and k is a proportionality constant. This linear relationship
would imply, for example, that if we double the number of people on the
team, we will double the output. Real world experience would indicate that
this is not true; the increase in the output would be something less than a
factor of two. This reduction comes about because of increased
communication and coordination overhead among other things. Similarly,
if we double the amount of time available, we should slightly more than
double the amount of code produced, since some of the overhead in the
production is not proportional to the time involved. In general, therefore,
the relationship would be more like this:

LOC = kF(N,t).

A logical simplifying assumption would be that the variables in F
can be separated so that

LOC = kf(N)T(t).

In an effort to determine a complete model, we will first hold the
time constant and examine the effect of changing the number of people
involved. As indicated above, if we increase the number of people, the
rate of change of the LOC differs from a constant by a slowly increasing
function of N. We will try this form (we abbreviate LOC to L for this
and all equations that follow):

dL/dN = P – b ln N.

This model has an obvious flaw. There is a value for N where the
derivative becomes negative, which implies that additional increases in
N will actually decrease productivity. Although there are incidents of
exactly this behavior for short time periods, it should not be true for
long-term projects. We will see later how this can be managed. Solving
the equation leads to this model:

L = k[(P + b)N – bN ln N + C] T(t)

Assuming that no people would imply zero production, the con-
stant of integration (C) would be zero. Without losing any generality,
the constant k can be absorbed into the function f(N) yielding

L = [(P + b)N – b N ln N] T(t)

The “Software Equation” Revisited
Keith B. Olson, Ph.D.

Utah Valley State College, Department of Computer Science
800 West University Parkway, Orem, Utah 84058-5999

Tel: 801-863-6392 Fax: 801-224-2934
Email: olsonke@uvsc.edu

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 457

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Assuming that T(t) is held constant, we can evaluate the constants
P and b by knowing two productivity figures based on different values of
N. Consider a situation (admittedly fictitious) where doubling the num-
ber of people increases productivity by 90%. If N

0
 is the smaller of the

two teams, then P and b are related by

P = [12.863 + ln N
0
]b

If we know productivity for one team, we can then determine
actual values for P and b. If a team of 4 (P

0
) can produce 2000 lines of

code in our fixed time frame, we would determine that P = 513.858 and
b = 36.062. (This sets T(t) = 1, with units undefined). If we compare
the results of the prediction equation

L = [(P + b)N – b N ln N} = 549.920 N – 36.062 N ln N
 = [549.920 – 36.062 ln N] N

with results found by multiplying the production by 1.9 when N is doubled,
we obtain this table:

N LOC Equation Error
4 2000 2000 0
8 3800 3799 .03%
16 7220 7199 .3%
32 13718 13598 .9%
64 26064 25596 1.8%

Obviously there is a point where this model will fail, as mentioned
above. However, to be able to extrapolate from 4 and 8 people to 64
with only a 2% error is acceptable. If the constants were determined
from N = 32 and N = 64, for example, it would perform well at N = 4 and
also at N = 256, certainly a wide range.

Now, let us turn our attention to the time function, T(t). A similar
model might be considered here, except that now if we double the time,
we should expect to more than double the production. Thus, the differ-
ential equation for T would be:

dT/dt = R + q ln t

giving rise to the following equation:

T(t) = (R – q)t + q t ln t.

The constants in this equation would be determined in a manner
similar to those for f(N). The combination would give the production
model

L = [(P + c)N – c N ln N][(R – q)t + q t ln t].

This can be rewritten in the form:

L = (P + c)(R – q)[N – {c/(P + c)}N ln N][t + {q/(R – q)}t ln t]

 or

L = A[N – B N ln N][t + C t ln t].

Having three arbitrary constants in the model (A, B, and C) would
require three data points for a team in order to establish a predictive
equation for future work. Let’s use the following data points to evaluate
the constants in the equation:

N t L
8 1 20
32 1 72
8 4 88

(This data is generated by assuming that doubling N will multiply L
by 1.9, and doubling t will multiply L by 2.1) This generates a set of
three non-linear equations in A, B, and C, which can be solved. The
resulting model is

L = 2.8748[N – 0.0627 N ln N][t + 0.0721 t ln t]

We will apply this model to the data points above, along with a few
others. The actual values for the other points were computed using the
multipliers mentioned above. The results are in the following table.

N t L Calculated L Error
8 1 20 19.9998 0.001%
16 1 38 38.0007 0.002%
32 1 72 72.0032 0.004%
32 2 151 151.2065 0.014%
8 4 88 87.9961 0.004%
16 4 167 167.1948 0.012%
32 4 318 316.7993 0.378%
64 8 1269 1251.2165 1.401%

As long as one stays within the points used to determine the con-
stants (interpolation), the results are excellent. If one moves outside
those limits (extrapolation), the performance deteriorates, but is still
acceptable. This is the approach that would be used to avoid the nega-
tive derivative problem mentioned above; the constants should be cali-
brated with values as close as possible to the points where the prediction
is needed.

Let us apply this model to the example quoted from Pressman
above. Since we only have one data point available to work with, we will
estimate two of the parameters, then determine the third based on the
given data. Note at the outset that for eight people to produce twelve
person-years of effort will require 1.5 years, not 1.3 as asserted in the
example. We will use as a base point the values of N = 8, t = 1.5, and L
= 33000. We will approximate B as 0.1 and C as 0.2. Using these values,
we determine the equation as:

L = 3212 [N – 0.1 N ln N][t + 0.2 t ln t].

Now, if we keep L at 33000 and change t to 1.75, we obtain this
equation in N:

N – 0.1 N ln N – 5.2799 = 0.

Solving this by Newton’s method, we obtain a value of 6.5 for N,
certainly a more reasonable figure. If we use values of B = 0.2 and C =
0.1 instead, the predicted value for N is 6.2. If B = C = 0.2, then the
predicted N is 6.1. If we use the values of B and C obtained with the
artificial data above, that is B = 0.06 and C = 0.07, then the determined
value of N is 6.7, which seems to be a very reasonable figure. It should
be noted that 7 people for 1.75 years gives 12.25 person-years of
effort, close to the asserted 12 person-years estimated at the outset.

The Second Approach. As indicated above, there is a problem
with the model just described. At some point, the logarithm of N
becomes large enough that the derivative of the productivity becomes
negative. In an effort to eliminate this problem, let us assume an
equation of the form:

dL/dN = Pe-kN..

Solving this equation yields this formula for the productivity:

L = (P/k)(1 – e-kN).

If we determine the constants P and k by the use of L(4) and L(8)
as used previously, we obtain the following equation:

458 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

L = 20000 (1 – e-0.02634N).

Applying this formula to the data previously used, we obtain these
results:

N LOC Equation Error
4 2000 2000 0.0%
8 3800 3800 0.0%
16 7220 6878 4.7%
32 13718 11391 17.0%
64 26064 16294 37.5%

A quick glance at the error figures will convince us that this model
is not as consistent as the first one presented.

CONCLUSIONS
It is obviously possible to define a predictive model with an equa-

tion of the form

L = A [N – B N ln N][t + C t ln t].

In interpolation and extrapolation modes, the model works with
acceptable accuracy for the data used. The model has not been initial-
ized with actual industrial data, which is an essential test for validity. A

significant problem with the model is that three data points are required
in order to determine the constants.

The second approach given above seems less promising, although
it does have features that would recommend it.

Future Work. This is obviously a work in progress. One signifi-
cant step that needs to be taken is to determine the constants using
industrial data. That is almost certainly the best test of its validity.
There are other models that could and should be examined, particularly
those that will avoid the negative derivative problem of the first model.

There is another problem with this model that requires some atten-
tion. It is not really possible to solve the equation explicitly for N in
terms of L and t. Thus, finding N when L and t are given requires a
numerical approach such as Newton’s method. The same is true when
solving for t given N and L. This is not a serious difficulty, but does
detract from the elegance of the theory.

In spite of these problems, the usefulness of a software equation of
this type makes it worth the effort to find an approach that eliminates
the difficulties with the equations used in the past.

REFERENCES
1. Pressman, R., Software Engineering, A Practitioners Approach,

Fifth Edition, McGraw Hill, 2001.
2. Putnam, L., and W. Myers, Measures for Excellence, Yourdon

Press, 1992.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/software-equation-revisited/32045

Related Content

A Fuzzy Multicriteria Decision-Making Approach to Crime Linkage
Soumendra Goalaand Palash Dutta (2018). International Journal of Information Technologies and Systems

Approach (pp. 31-50).

www.irma-international.org/article/a-fuzzy-multicriteria-decision-making-approach-to-crime-linkage/204602

The Rise of Cyberstalking
Carsten Mapleand Kristiana Wrixon (2015). Encyclopedia of Information Science and Technology, Third

Edition (pp. 6801-6809).

www.irma-international.org/chapter/the-rise-of-cyberstalking/113144

IoT Setup for Co-measurement of Water Level and Temperature
Sujaya Das Gupta, M.S. Zambareand A.D. Shaligram (2017). International Journal of Rough Sets and Data

Analysis (pp. 33-54).

www.irma-international.org/article/iot-setup-for-co-measurement-of-water-level-and-temperature/182290

WSN Management Self-Silence Design and Data Analysis for Neural Network Based

Infrastructure
Nilayam Kumar Kamilaand Sunil Dhal (2017). International Journal of Rough Sets and Data Analysis (pp.

82-100).

www.irma-international.org/article/wsn-management-self-silence-design-and-data-analysis-for-neural-network-based-

infrastructure/186860

Competitive Intelligence from Social Media, Web 2.0, and the Internet
Sérgio Maravilhas (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 558-

566).

www.irma-international.org/chapter/competitive-intelligence-from-social-media-web-20-and-the-internet/112369

http://www.igi-global.com/proceeding-paper/software-equation-revisited/32045
http://www.irma-international.org/article/a-fuzzy-multicriteria-decision-making-approach-to-crime-linkage/204602
http://www.irma-international.org/chapter/the-rise-of-cyberstalking/113144
http://www.irma-international.org/article/iot-setup-for-co-measurement-of-water-level-and-temperature/182290
http://www.irma-international.org/article/wsn-management-self-silence-design-and-data-analysis-for-neural-network-based-infrastructure/186860
http://www.irma-international.org/article/wsn-management-self-silence-design-and-data-analysis-for-neural-network-based-infrastructure/186860
http://www.irma-international.org/chapter/competitive-intelligence-from-social-media-web-20-and-the-internet/112369

