
478 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
A major purpose of analysis is to represent precisely all relevant facts, as
they are observed in the external world. A substantial problem in object-
oriented analysis is that most modelling languages and methods are
more pointed at building computational models than conceptual models.
It is a very blind assumption that concepts that are convenient for design
can also be applied during analysis. Meta-model patterns describe the
adequateness and the use of concepts in modelling languages. In this
paper, concepts as queries, attributes, invariants and preconditions will
be evaluated as possible building stones for conceptual modelling.
Furthermore, a new concept is proposed to specify properties or behaviour
where in more than one object is involved.

1. INTRODUCTION
A major purpose of analysis is to represent precisely all relevant

facts, as they are observed in the external world. A substantial problem
in object-oriented analysis is that most modelling languages and meth-
ods are more pointed at building computational models than conage
(UML) [13], are more pointed at building computational models than
conceptual models. As defined in [1, p.4], a computational model de-
scribes a software product and is the output of design activities. Perhaps
the most difficult aspect of analysis is avoiding software design [3]. It is
a very blind assumption that concepts that are convenient for design are
also valid for analysis. As stated in [8, p.144], it is unwise to try to
design requirements modelling languages by merely adopting program-
ming language ideas.

Meta-model patterns describe the of use concepts in modelling
languages whereas patterns rather describe useful models. Meta-model
patterns can also introduce new concepts and forbid others. As an ex-
ample, Fowler [6, p.305] introduces a new concept for modelling the
history of values.

Do these patterns augment the quality of a conceptual model?
From our point of view, meta-model patterns for analysis help to model
reality and form part of an analysis method. An analyst has to focus on
the domain problem rather than concentrating on possible concepts and
alternatives to model reality. Meta-model patterns for analysis lead the
analyst in building conceptual models instead of computational models.
These patterns promote the separation of concerns during analysis and
design.

A good analysis method imposes rules on the concepts it offers. A
decision of an analyst on how to represent an observed fact indicates a
lack in the analysis method. From our point of view, the ultimate goal of
an analysis method is to guide the analyst specifying precisely all rel-
evant real world facts without any design or modelling concern.

2. A META-MODEL PATTERN FOR SPECIFYING
PROPERTIES

In this paper, a property is defined as a relationship between a class
and a data type. The state of an object of a class can be changed; the
state of a data value of a data type can never be changed [13, p.2-113].

Queries and attributes are competing concepts at the level of analy-
sis. They can be both used to model a relationship between a class and a

data type. Queries offer advantages compared with its competitor. The
advantages are shortly described in this pattern. Attributes are not needed
in object-oriented analysis. This simple pattern helps the analyst to
model properties and promotes the maintainability of the model. It
eliminates the possible modelling alternatives for an analyst.

Borgida [2, p.1] states that an analyst should not model the way
data is stored in a computer. In our opinion, an attribute is rather a
design-oriented and programming concept. An attribute suggests data
representation while data representation is clearly a design issue.

The concept of a query is semantically richer than the concept of
an attribute. Every relationship between a class and a data type can be
expressed as a query but not as an attribute. The analyst has no choice
between an attribute and a query when explicit arguments are involved
in modelling a property. Only queries can have explicit arguments. We
are in favour of using as few concepts as possible in the analysis phase
for simplicity reasons.

Some analysts use queries to model derived properties and attributes
to model non-derived properties. However, this way of modelling of
both types of properties compromises the extendibility of the concep-
tual model. When a non-derived property becomes a derived property,
an attribute has to be deleted and a query has to be introduced. The
interface of the class is changed, although, the property as such still
exists. The transformation from a non-derived property in a derived
property is a well-known phenomenon in case a model is extended.
Consequently, methods where the interface of a class does not change
when the property becomes derived are preferred.

Notice that in this paper an association was not considered as an
alternative to model a property. In [14, p.170] the authors argued that
for relationships between classes associations are used because it is im-
portant to see the relationship in both directions while for relationships
between a class and a data type the latter is usually subordinate to the
class and has no knowledge of it.

In the next patterns, the queries will be modelled in the first com-
partment of the class. The second compartment of a class will only
contain events.

3. A META-MODEL PATTERN FOR SPECIFYING
MESSAGES

One of the most specific concepts in object orientation, aside
inheritance, is that one can send messages to an object. This principle is
known as the message paradigm. The message paradigm forces the
software engineer to associate a message with a class. This leads to a
more consistent structure.

The message paradigm in object-oriented analysis works well as
long as one object is involved. Problems arise when none or more than
one object is involved in a message. The next pattern describes how to
model messages where in more than one object is involved. The ques-
tion rises to which class the message will be associated.

Consider the example in the above figure. Assume that a property
returning the total balance of all the accounts of a specific person at a
specific bank is relevant. The query totalBalance() could be attached to

Meta-Model Patterns in Object-
Oriented Analysis

Frank Devos and Eric Steegmans
Department of Computer Science, Katholieke Universiteit Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium
{frank.devos,eric.steegmans}@cs.kuleuven.ac.be

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 479

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

totalBalance(nameOfTheBank : String) to the class Person, assuming
that the name of the bank is unique. In our approach, other patterns
exist to avoid this modelling option.

4. A META-MODEL PATTERN FOR SPECIFYING
CONSTRAINTS

In the external world, an analyst observes human or business-im-
posed, physical or legal laws, rules and regulations. The UML provides
the Object Constraint Language (OCL) to express constraints in a pre-
cise way [13, p.6-2]. The OCL offers preconditions, postconditions and
invariants as (traditional) concepts for expressing constraints [13, p.6-
5]. Notice that the use of invariants, pre- and postconditions during the
analysis phase suggests in no way an implementation strategy [13, p.6-
1].

During analysis, an invariant is defined as a feature that must be
true at each moment in time, without determining how and when this
feature must be controlled [7, p.110] [15, p.393]. Due to the opera-
tional nature of design, the definition of an invariant during the design
phase has to be less restrictive: an invariant must be true at all times,
except during the execution of an operation. Warmer and Kleppe, the
main authors of the OCL, seem to adopt this design view on an invari-
ant. Their initial statement that “an invariant must be true all the time”
[16, p.4] has been rephrased as “the invariant must be true upon comple-
tion of the constructor and every public method but not necessarily
during the execution of methods” [10].

The differences in the definition of the concept of an invariant
illustrate the need for different concepts during analysis and design.
Both phases have different goals. Because of these different goals, dif-
ferent concepts are needed.

As defined, at the level of analysis an invariant must be satisfied at
any time. However, problems arise as soon as events must be specified.
The specification of an event can contradict the specification of an
invariant. Two main approaches exist to solve this problem. The ap-
proaches are illustrated in the second figure.

A first approach consists in a more detailed specification of the
event that eliminates the contradiction. The conditions for the effect
of the event will be stricter. These extra specifications violate the re-
quirement of modelling a real world fact only once. If the specification
of n events can possibly contradict the invariant, the real world restric-
tion is represented in n+1 places: once as invariant and n -times as a
condition for the effect of the event. This approach does not support
adaptability and extendibility. Traditionally, these conditions are mod-
elled with an implication or a precondition.

Fig. 1. Messages with Implicit and Explicit arguments or N-ary Messages

the class Person or to the class Bank. The choice of the context during
analysis will be rather arbitrary. Also looking at the different specifica-
tions of the postconditions will not help: the specifications are each
other’s mirror image.

Two solutions are possible, modelling the same external world. In
our opinion, the decision to which class a message with more than one
object involved belongs, adds nothing new to the model about the facts
in the external world. This decision is clearly a design decision and
should not be taken during object-oriented analysis.

For that reason messages with more than one implicit argument
are introduced. These messages are called binary messages or more
general n-ary messages [4, p.184]. Binary messages in conceptual models
are illustrated for the bank case in the third alternative. Aside the intro-
duction of a new concept, the pattern forbids the use of objects as
explicit arguments. As a result, the analyst has only one possible way to
model the requirements of the domain. Notice that the use of class-
scoped messages is also forbidden. This excludes the alternative of a
class-scoped message with two explicit arguments attached at the class
Account.

Instead of one context class, there exist two context classes for the
binary message totalBalance(). The implicit arguments are referenced
by selfBank and selfPerson. More important is that also the specifica-
tion for the postcondition is changed. Instead of starting with one ob-
ject and navigating through the model, the postcondition has two start-
ing objects. This way of modelling is more declarative and abstract in
the sense that it does not suggest an implementation strategy.

A typical application of this concept is the linking of two or more
objects. Consider the relationship among persons and cars. How should
the acquisition of a car by a given person be reflected in term of mes-
sages? Is a person buying a car? Or is a car bought by a person? Should
there be a message applicable to a person, to a car or to both? When
using n-ary messages the answer is already given and the question be-
comes irrelevant.

One could argue that an analyst does not have to make a choice
between different classes if a data value instead of an object is used as an
explicit argument. In the example, one could have associated a message

Fig. 2. Alternatives respecting the invariant

 Account
balance(): Euro
limit() : Euro
withdraw()

context Account inv: balance >= limit
context Account :: withdraw(amount : Euro)

First Approach
post: (balance()@pre – amount >= limit()) implies balance() =
balance()@pre – amount
— or
pre: balance() - amount >= limit()
post: balance() = balance()@pre – amount
Second Approach
— the principle of non-violation is adopted.
post: balance() = balance()@pre – amount

Alternative One
 B a n k A c c o u n t

b a la n c e () : E u ro
0 ..* 1 P e rs o n

to ta lB a la n c e ()
1 0 ..* 1 0 ..* 1 0 ..*

context Person :: totalBalance(bank : Bank) post:
result= self.account()®select(account|account.bank() = bank).balance()®sum

Alternative Two

 P e rs o n B a n k
to ta lB a la n c e ()

A c c o u n t
b a la n c e () : E u ro

0 .. * 1 1 0 .. * 1 0 .. * 1 0 .. *

context Bank :: totalBalance(person : Person) post:
result=self.account()®select(account|account.person()= person).balance()®sum

Alternative Three

 Bank
Person totalBalance()

Account
balance() : Euro

0..* 1 Person
Bank totalBalance()

1 0..* 1 0..* 1 0..*

context Bank and Person :: totalBalance() : Euro post:
 result=(selfBank.account()®intersection(selfPerson.account()).balance()®sum

480 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The last approach is to adopt the principle of non-violation. This
principle states that an event, which is about to violate an invariant,
does not change the state of the model. This principle supports also the
adaptability and extendibility of the model. When invariants are added
to the model, the specification of events must not be changed. In addi-
tion, events can be easily added to the model without examining all
possible conditions under which they may violate invariants. This ap-
proach is less design and operational oriented than the first one. To
avoid possible contradictions or extra specifications the principle of
non-violation will be adopted.

5. CONCLUSIONS
Real world facts are modelled during analysis whereas software

systems are modelled during design. This makes it a blind assumption
that concepts for design are also suitable for analysis. Furthermore, this
distinction between analysis and design causes difficulties giving one
valid definition of a concept for both phases of the software life cycle.
Meta-model patterns in object-oriented analysis try to describe the ad-
equateness and the use of concepts for analysis purposes. These patterns
form part of an analysis method and helps the modeller to eliminate
design concerns during analysis.

REFERENCES
1. BOOCH G., Object-Oriented Analysis and Design with Appli-

cations, 1994, The Benjamin/Cummings Publishing Company, Inc.
2. BORGIDA A., “Features of Languages for the Development

of Information Systems at the Conceptual Level”, IEEE Software, 2(1),
January 1985, pp. 63-73.

3. DAVIS A., Software Requirements: Objects, functions and
states, 1993, Prentice-Hall.

4. DEVOS F., STEEGMANS E., The Message Paradigm in Ob-
ject-Oriented Analysis, The 4th International Conference on the Uni-
fied Modeling Language, LNCS 2185, 2001, pp.182-193.

5. DIESTE O., JURISTO N., MORENO A., PAZOS J. and SI-
ERRA A., Conceptual Modelling in Software Engineering and Knowl-
edge Engineering: Concepts, Techniques and Trends, Handbook of Soft-
ware Engineering and Knowledge Engineering, World Scientific Publish-
ing Company, 2000.

6. FOWLER M., Analysis Patterns, Reusable Object Models,
1997, Addison-Wesley.

7. GOGOLLA M. and RICHTERS M., On Constraints and Que-
ries in UML, The Unified Modeling Language, Physica-Verlag, 1998, pp.
109-121.

8. GREENSPAN S., MYLOPOULOS J. and BORGIDA A., On
formal Requirements Modeling Languages: RML revisited, International
Conference on Software Engineering, 1994, pp. 135-147.

9. HENNICKER R., HUSSMANN H. and BIDOIT M., On the
Precise Meaning of OCL Constraints, Advances in Object Modelling
with OCL, LNCS 2263, 2002, pp. 69-84.

10. KLASSE OBJECTEN, Errata for The Object Constraint Lan-
guage, Precise Modeling with Unified Modeling Language, 2002, http:/
/www.klasse.nl/english/boeken/ocl-intro.html.

11. LISKOV B. and WING J., A Behavioral Notion of Subtyping,
ACM Transactions on Programming Languages and Systems, Volume 6,
November 1994, pp.1811-1841.

12. MEYER B., Object-Oriented Software Construction, 1997,
Prentice Hall.

13. OBJECT MANAGEMENT GROUP, Unified Modeling Lan-
guage Specification, Version 1.4, 2002.

14. RUMBAUGH J., JACOBSON I., BOOCH G., The Unified
Modeling Language Reference Manual, 1999, Addison-Wesley.

15. VAN BAELEN, S., LEWI, J., STEEGMANS, E. and
SWENNEN B., Constraints in Object-Oriented Analysis, Object Tech-
nologies for Advanced Software, Lecture Notes in Computer Science,
Volume 742, 1993, pp. 393-407.

16. WARMER J. and KLEPPE A., The Object Constraint Lan-
guage, Precise Modeling with Unified Modeling Language, 1999,
Addison-Wesley.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/meta-model-patterns-object-

oriented/32051

Related Content

Gene Expression Analysis based on Ant Colony Optimisation Classification
Gerald Schaefer (2016). International Journal of Rough Sets and Data Analysis (pp. 51-59).

www.irma-international.org/article/gene-expression-analysis-based-on-ant-colony-optimisation-classification/156478

System Approach to MIS and DSS and its Modeling within SD
Miroljub Kljajic, Mirjana Kljajic Borštnar, Andrej Škrabaand Davorin Kofjac (2012). Research

Methodologies, Innovations and Philosophies in Software Systems Engineering and Information Systems

(pp. 340-359).

www.irma-international.org/chapter/system-approach-mis-dss-its/63271

Integrating Evidence-Based Practice in Athletic Training Though Online Learning
Brittany A. Vorndranand Michelle Lee D'Abundo (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 5810-5819).

www.irma-international.org/chapter/integrating-evidence-based-practice-in-athletic-training-though-online-

learning/184282

New Factors Affecting Productivity of the Software Factory
Pedro Castañedaand David Mauricio (2020). International Journal of Information Technologies and

Systems Approach (pp. 1-26).

www.irma-international.org/article/new-factors-affecting-productivity-of-the-software-factory/240762

The Web Ontology Language (OWL) and Its Applications
Jorge Cardosoand Alexandre Miguel Pinto (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 7662-7673).

www.irma-international.org/chapter/the-web-ontology-language-owl-and-its-applications/112469

http://www.igi-global.com/proceeding-paper/meta-model-patterns-object-oriented/32051
http://www.igi-global.com/proceeding-paper/meta-model-patterns-object-oriented/32051
http://www.irma-international.org/article/gene-expression-analysis-based-on-ant-colony-optimisation-classification/156478
http://www.irma-international.org/chapter/system-approach-mis-dss-its/63271
http://www.irma-international.org/chapter/integrating-evidence-based-practice-in-athletic-training-though-online-learning/184282
http://www.irma-international.org/chapter/integrating-evidence-based-practice-in-athletic-training-though-online-learning/184282
http://www.irma-international.org/article/new-factors-affecting-productivity-of-the-software-factory/240762
http://www.irma-international.org/chapter/the-web-ontology-language-owl-and-its-applications/112469

