
496 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
Data warehouses with proven capabilities to deal with the massive amounts
of information have already won the acceptance of many large
organizations. This acceptance now is having users look for support of
more complex data rather than just supporting data from legacy file
systems and relational databases. While the incorporation of the object
database technology has been one choice, the Object/Relational Database
Management Systems (ORDBMSs), a blend of the Relational and Object
technologies aimed at reaping the best of the both, is the preferred option.
This paper presents a model for an ORDBMS based data warehouse. The
model provides an infrastructure for the user to work with data represented
in the form of classes, analyze it using tools, and also query the database
at an abstract level. The model has been tested with a prototype using
Oracle 8 in the backend and Java to build the analysis tools and user
interface.

1. INTRODUCTION
Data warehouses provide the database arranged for ease and speed

of search and retrieval of the data, in a way especially useful for business
analysis purposes [1-6]. Such a database/databank can be accessed and
analyzed using several tools like query engines, data mining algorithms,
information visualization tools, report generators and the like [4]. The
end-users are readily supplied with all the required business information
on their desktops so that more responsive, faster and better decisions
than ever before are taken.

To provide fast, efficient and reliable access to huge quantities of
data for the millions of business units we often find the Relational
DBMS (RDBMS) in use. However, in many application domains, like
Computer Aided Design and Modeling (CAD/CAM), multimedia reposi-
tories, and document management, complex data types must be handled.
As the amount of data grows, the many features offered by a DBMS for
data management — for example, reduced application development
time, concurrency control and recovery, indexing support, and query
capabilities — become increasingly attractive, and ultimately, neces-
sary. In addition, for developing data warehouse and On-Line Analytical
Processing (OLAP) systems, the dominant relational database reaches
its limitation. For example, the conventional star schema model of data
warehouse has some limitations due to the nature of the relational model.
First, this model cannot represent the semantics and operations of multi-
dimensional data adequately. It is very difficult to address the problems
of view design efficiently because of the hidden semantics. Second, in
defining the higher level of summary data which require multiple com-
plex aggregations, SQL queries do not portray the intuition needed to
facilitate building and supporting efficient execution of complex queries
on complex data.

While the incorporation of the object database technology has
been one choice[4], the Object/Relational Database Management Sys-
tems (ORDBMSs), a blend of the Relational and Object technologies
aimed at reaping the best of the both, is the preferred option. It enables
the users to define additional kinds of data — specifying the structure of
the data and also the ways of operating on it — and use these types
within the relational model [7]. It also facilitates the storage of the

structured business data in its natural form and the applications for its
retrieval too. By use of the object-oriented programming techniques
ORDBMSs can also work efficiently with the applications so developed.
Their support for user-defined datatypes further makes it easier for
application developers to work with complex data like images, audio,
video etc.

In developing complex systems such as data warehouses, the
ORDBMS is becoming very attractive. Such integration is referred to as
Object Relational Data Warehouses (ORDW). The semantics of data
and queries can be explicitly captured, represented, and utilized based on
objects, leading to more efficiencies as well as capabilities. There has
been several researches related to developing and manipulating ORDW
[8-11]. In [8], authors propose their ORDW architecture with new
metadata layer and describe the design and implementation of a new
kind of metadata to bridge the gap between the object-oriented environ-
ment and the relational database. Various metadata classes are defined
and their roles in the O-R data warehouse are discussed.

In [9], authors present a methodology for efficient query process-
ing in an ORDW environment by defining and incorporating the Asso-
ciated Horizontal Class Partitioning (AHCP) techniques over the ORDW
schema. The proposed scheme starts with a given set of data warehouse
queries and creates a near-optimal AHCP scheme for the queries. Then,
the proposed scheme selects the AHCP fragments as materialized views
to facilitate efficient evaluation of these queries.

OLAP queries in data warehousing systems are essentially complex
queries involving multiple dimensions and their specialization. In [10],
authors discuss the need to incorporate additional semantics and provide
the ORDW environment to explicitly capture, represent, and utilize the
query and data semantics based on is-a and class composition hierar-
chies. They define a query-driven indexing approach based on Structural
Join Index Hierarchy (SJIH) mechanism, specifically by using a hill-
climbing heuristic algorithm, for efficient OLAP query processing.

In [11], authors propose the Object-Relational View design for the
data warehouse. Using the object-oriented approach, it is possible to
explicitly represent the semantics and reuse view (class) definitions
based on the is-a hierarchy and the class composition hierarchies, result-
ing in a more efficient view mechanism.

Current literature lack discussion of the design of a class-based data
warehouse model that provides an infrastructure for the user to work
with data represented in the form of classes, analyze it using tools (i.e.,
data mining, statistical analysis tools), and query the database at abstract
level. This paper presents a class-based model for an ORDBMS based
data warehouse. It supports objects, by providing multi-dimensional tuples
with facility for their embedment with other objects as well. As such, the
user herein needs only basic knowledge of Java to create classes for the
objects. A graphical user interface is also developed to facilitate interac-
tion with the data warehouse, such that a user can list, add, delete and
update the classes and the analysis tools also. These tools can be used on
the classes in the databases to extract information, in addition to the
queries. The model has been tested with a prototype using Oracle 8 in
the backend and Java to build the analysis tools and the user interface.

Supporting Object and Relational Data
in a Data Warehouse

Ramesh Suribhatla, Les Miller M. Mehdi Owrang O.
 Dept. of Computer Science Dept. of Computer Science, Audio Technology, and Physics
 Iowa State University American University
 Ames, Iowa 50011 4400 Massachusetts Avenue, N.W., Washington, D.C. 20016
 lmiller@iastate.edu owrang@american.edu

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 497

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The next section briefly looks at the issues in data warehousing.
Section 3 looks at the design criteria and Section 4 looks at the system
model. Section 5 looks at the prototype. Finally, we present our
conclusions in Section 6.

2. DATA WAREHOUSE
According to W.H. Inmon (known as the father of data warehous-

ing), a data warehouse [1-6] is a subject-oriented, integrated, time-vari-
ant, nonvolatile collection of data that is used primarily in organiza-
tional decision-making — where
• Subject-oriented means that all relevant data about a subject is

gathered and stored as a single set in a useful format.
• Integrated refers to data being stored in a globally accepted fashion.
• Time-variant data represents long-term data.
• Non-volatile means the data warehouse is read-only.

3. DESIGN CRITERIA AND MODEL
Our data warehouse model has been designed to provide an infra-

structure for a user to work with the data represented in the form of
classes, analyze it using the tools and also query the database. The design
and implementation of such a model should meet the following criteria:

Data and Classes
• The user views the data in the form of objects of a class and interacts

with them.
• The classes support nested classes. And when a class is updated, all the

other classes nesting that class would also be updated.
• The precision of the data is maintained, while storing, retrieving and

updating the data from the data warehouse.
• The methods in a class can be called at the runtime. This allows

methods, which are particular to a class, to be executed on the objects.
• The system contains kernel features for adding, deleting and updating

classes.
• It also lists the classes and describes them by specifying its fields,

constructors and methods.

Tools
• Tools are created, to analyze the data by running them on the data

obtained by querying a class or a join of classes — with or without
condition statements.

• The system kernel must provide features to add and delete a tool from
the data warehouse.

Query
• An interface needs to be provided to build a query by selecting the

fields from one or more classes — and by specifying the condition
statements, if needed.

User-friendliness
• A user-friendly GUI should be provided to make the data warehouse

usable.

In the next subsection we look at a conceptual view of our prototype.

3.1 A Conceptual View of the Data Warehouse Model
The block diagram in Figure 1 showcases the various features and

components of this environment.

3.2 Meeting the Design Criteria

Data and Classes
• Using the fields specified in the Java source file, an ADT is created in

the Oracle schema representing the Java class, where the fields in the
Java class are represented by their corresponding attributes in the
ADT.

• Apart from the Oracle datatypes, the ADTs can be built using other
ADTs that are already created in the schema, thus supporting the
nested objects feature.

• When a method in a class is called at the runtime on an object, the
method is executed by instantiating an object with the data retrieved
from the database at the runtime by querying and then calling the
method on that object.

Tools
The analysis tools are executed by passing the query results, ob-

tained by executing the query, to a constructor of the tool. The source
code of the tool has a set of overloaded constructors required to suit the
various parameter lists.

Query
Similarly, the queries created by the user are sent to the database,

executed and the results obtained are directly sent on to the GUI.

The next section overviews the current prototype.

4. PROTOTYPE
This section briefly overviews the implementation of the various

kernel features of the data warehouse developed as a Java application
that runs on a stand-alone system. It is built using the classes that add
the kernel features of ‘Classes’, ‘Tools’, ‘Query’ and ‘Help’.

4.1 Classes
Classes are one of the most important features in this application,

as the user is to interact with the data in the form of Java classes.
However, these classes are transformed into Oracle ADTs and stored in
the Oracle database.

A utility Java class called ‘Classes_Info.java’ is implemented to
interact with the Classes_Info_Table, to get and set the information
needed for the kernel tools. The methods in this class make use of JDBC
to connect to the Oracle database and get the list of classes existing; add
or remove a class to the list of classes existing; get the list of classes that
nest a given class; add or remove a class to the list of classes that nest a
given class; and get the list classes that are populated.

4.2.1 List the Classes
This kernel feature lists the classes available in the data warehouse.

The list of classes is obtained from the ‘Classes_Info_Table’ and dis-
played in the form of a list in the GUI. When a user selects a class, the
description of the class is displayed.

4.2.2 Add a Class
Implemented in the ‘AddClassPanel.java’ file, this kernel feature is

useful for adding a class to the data warehouse. It is implemented in the
following manner:
• The user places the Java source file in the ‘AddClasses’ directory and

specifies the name of the class that is being added in the text field as
shown in the Figure 2.

• Then it is compiled to make sure that there are no syntax errors. If a
class nests other user-defined classes, we make sure that these nested
classes are already in the warehouse before it is added.

• After meeting the necessary requirements, a class file is generated and
placed in the home directory of the warehouse. Also, a source file is
copied as a back up.

Figure 1. Conceptual view of the model.

498 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

• An Oracle ADT is created using the fields in the source file. A typemap
is used to convert the datatype of a field in Java to the datatype of an
attribute in Oracle.

• During the creation of this ADT, it is checked if this class uses any
other existing classes. This list also helps to prevent deleting a class
when classes that depend on this class exist in the schema.

4.2.3 Populate a Class
After creating a class, to populate a class <className>, a batch file

containing Java application program called ‘Populate’ is executed from
the command prompt, by typing ‘populate className’. This creates a
table in the schema with ‘className_table’ as its name and populates it
by reading the data from the ‘className.txt’ file. The table is created
only with one attribute, the ADT that is representing the className.

The prototype kernel also provides support for deleting and updat-
ing existing classes.

4.3 Tools
The tools are run on the classes to analyze them by extracting the

data from the Oracle database by querying. Generic tools like
Average_tool, Count_tool and Walk_tool have been implemented in
the system as examples.

A utility Java class called ‘ToolsInfo.java’ is implemented to inter-
act with the Tools_Info_Table. The methods in this class use JDBC to
connect to the Oracle database to get the list of tools existing, and to
add and remove a tool from the list of existing tools.

4.3.1 Running the Tools
This feature included in the query panel is used to run the tools on

the classes and analyze the data. The user selects the needed class, the
fields and a tool to be run on it. An SQL query, on a class or join of
classes with or without condition statements, is generated at the runtime
and executed to get the data from the database.

The results of a query are obtained in the form of a collection/array
of Java datatypes by calling JDBC methods on the result set and con-
verting the results from Oracle back to Java format.

The analysis tools consist of overloaded constructors accepting
array(s) of primitive datatype or String as input parameters. The cor-
responding constructor is instantiated with the results in the form of an
array obtained by querying as explained above.

4.4 Querying
Querying is the core and most important feature of the data ware-

house developed in this paper. It combines the conventional query in-
terface with the analysis tools and method invocation features making
it possible for the user to interact with the system more efficiently,
providing a user-friendly interface. The interface consists of two panels

‘Query Form’ and ‘Query Results’. Using the Query Form, a user can
build an SQL query by selecting the required class(es), the fields in the
class and by specifying the conditions, which can be combined with
AND’ / ‘OR’. The Query Results panel is used to display the results.
Further the results obtained by querying can be analyzed either by run-
ning the analysis tools on them or by executing a method on the objects
of a class or a combining the two.

In the Query Form, the ‘List Of Populated Classes’ consists only of
the classes that are populated. The fields in the class are represented in
the form of a tree in the ‘List Of Fields’ allowing the user to select the
fields in the class and also the fields in the nested classes. The user can
select multiple fields from a class by clicking on the fields with the
control key ‘Ctrl’ pressed on the keyboard or can select all the fields in
the class by selecting the Class name, which is the root of the tree. The
user can also deselect a field by clicking on it with the control key
pressed. The list of fields selected is shown in the ‘Query‘ box, prefixed
by ‘SELECT’, a keyword in this implementation indicating the fields
selected (having the same terminology as in the standard SQL).

Similarly, the user can select multiple classes by using the control
key from the list of classes, to form a query involving a join of two or
more classes. The classes selected are displayed in the ‘Query’ box pre-
fixed by ‘FROM’.

Conditional statements can be added to the query by typing in the
conditions. These logical expressions can be combined by using key-
words like ‘AND’ and ‘OR’. The conditions added are prefixed by the
keyword ‘WHERE’. The query can be made more sophisticated by using
the keywords in Oracle like ‘LIKE’, ‘NOT IN’, ‘NULL’, and ‘NOT
NULL’, but for this user needs to have knowledge of Oracle. Apart from
these, though there is no text field for adding other clauses, options like
‘ORDER BY’ can be added to the query in the ‘Query’ box. Also, a user
familiar with SQL can type the query in the Query box, in the format
that is being used in this project and following the keywords used, and
execute it.

The user, after forming the required query, can click on the ‘Run’
button and execute the query or click on the ‘Reset’ button to start the
querying from the beginning. The query formation procedure can be
depicted as shown in Figure 3.

Before executing the query, it is parsed to change the required parts
of it into a format that Oracle can understand. After parsing, JDBC is
used in getting connected to the Oracle database and execute the queries.

The data warehouse allows the user to look at the query results or
store them in a file.

4.4.1 Querying with Analysis Tools and Method Calls
A user can run an analysis tool on a query by selecting it from the

tools available in the data warehouse (and only one tool can be selected

Figure 2. Adding a class to the data warehouse.

Figure 3. Query interface to query, run tools and call methods

Information Technology and Organizations 499

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

at a time). The tool runs on the query results and returns the analysis
results.

Similarly, a method can be selected from the list of methods imple-
mented in a class and invoked on the query results by passing the results
as input arguments. Using these results, objects of the class are instanti-
ated and the method is executed on them. Also, the analysis tools and
the method calls can be used together, i.e. by first calling the method and
then by running the tool on the values returned by the method call.

5. CONCLUSION
In this project, a data warehouse model has been developed and

implemented using Oracle, version 8, supporting abstract datatypes. A
successful attempt has been made to meet the criteria stated in this
paper. It involves an integrated implementation of certain features like
creating a Java perspective for the objects, which are actually stored in
Oracle as ADTs; the nesting of objects (one into another); calling the
methods of a class on its objects; running data analysis tools on the
classes and querying. A user-friendly GUI is also provided which facili-
tates the use of the kernel features and work with the objects and the
tools.

REFERENCES
1. Sun in Data Warehousing, Business Intelligence white papers,

January 1997 http://www.sun.com/software/solutions/third-party/dw/
whitepapers/med-WP.html

2. What is a Data Warehouse? W H Inmon http://
www.cait.wustl.edu/cait/papers/prism/vol1_no1

3. Data Warehouse, Tatiana Goes Mendonca, December, 1997
http://www.ecst.csuchico.edu/~tatianam/csci374/dataware.html

4. A Data Warehouse Based on Materializing Object-Oriented
Views, L.L. Miller, Yeping Zhou, Ying Lu, Sree Nilakanta, A.R. Hurson,
submitted for publication.

5. An Introduction to Data Warehousing, Vivek R. Gupta, Sys-
tem Services, August 1997. http://www.system-services.com/dwintro.asp

6. Data Warehousing: An Overview, Gabrielle Gagnon http://
www.zdnet.com/pcmag/pctech/content/18/05/ec1805.001.html

7. Oracle 8 Server Concepts http://nash.baruch.cuny.edu/oracle/
server803/A54643_01/toc.htm

8. Metadata for Object-Relational Data Warehouse, Thanh N.
Huynh, Oscar Mangisengi, and A. Min Tjoa, Proceedings of the
International Workshop on Design and Management of Data Ware-
houses (DMDW’2000), Stockholm, Sweden, 2000, PP. 3.1-3.9.

9. Efficient Query Processing with Associated Horizontal Class
Partitioning in an Object Relational Data Warehousing Environment,
Vivekanand Gopalkrishnan, Quing Li, and Kamalakar Karlapalem, Pro-
ceedings of the International Workshop on Design and Management of
Data Warehouses (DMDW’2000), Stockholm, Sweden, 2000, PP. 4.1-
4.9.

10. Efficient Query Processing with Structural Join Indexing in an
Object Relational Data Warehousing Environment, Proceedings of In-
formation Resource Management Association International Conference
(IRMA ’00), Anchorage, Alaska, 2000, PP. 976-979.

11. Star/Snow-Flake Schema Driven Object Relational Data Ware-
house Design and Query Processing Strategies, Vivekanand
Gopalkrishnan, Quing Li, and Kamalakar Karlapalem, Proceedings of
the First International Conference on Data Warehousing and Knowl-
edge Discovery (DaWak), LNCS 1676, Florence, Italy, 1999, PP. 11-
22.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/supporting-object-relational-data-

data/32057

Related Content

A Survey on Supervised Convolutional Neural Network and Its Major Applications
D. T. Maneand U. V. Kulkarni (2017). International Journal of Rough Sets and Data Analysis (pp. 71-82).

www.irma-international.org/article/a-survey-on-supervised-convolutional-neural-network-and-its-major-

applications/182292

A Framework for Profiling Prospective Students in Higher Education
Santhosh Kumar Lakkaraju, Deb Techand Shuyuan Deng (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 3861-3869).

www.irma-international.org/chapter/a-framework-for-profiling-prospective-students-in-higher-education/184095

An Objective Compliance Analysis of Project Management Process in Main Agile Methodologies

with the ISO/IEC 29110 Entry Profile
Sergio Galvan-Cruz, Manuel Mora, Rory V. O'Connor, Francisco Acostaand Francisco Álvarez (2017).

International Journal of Information Technologies and Systems Approach (pp. 75-106).

www.irma-international.org/article/an-objective-compliance-analysis-of-project-management-process-in-main-agile-

methodologies-with-the-isoiec-29110-entry-profile/169769

Experiment Study and Industrial Application of Slotted Bluff-Body Burner Applied to Deep Peak

Regulation
Tianlong Wang, Chaoyang Wang, Zhiqiang Liu, Shuai Maand Huibo Yan (2024). International Journal of

Information Technologies and Systems Approach (pp. 1-15).

www.irma-international.org/article/experiment-study-and-industrial-application-of-slotted-bluff-body-burner-applied-to-

deep-peak-regulation/332411

Open Data Repositories in Knowledge Society
Nadim Akhtar Khan, Sara Sohrabzadehand Garvita Jhamb (2018). Encyclopedia of Information Science

and Technology, Fourth Edition (pp. 4436-4447).

www.irma-international.org/chapter/open-data-repositories-in-knowledge-society/184151

http://www.igi-global.com/proceeding-paper/supporting-object-relational-data-data/32057
http://www.igi-global.com/proceeding-paper/supporting-object-relational-data-data/32057
http://www.irma-international.org/article/a-survey-on-supervised-convolutional-neural-network-and-its-major-applications/182292
http://www.irma-international.org/article/a-survey-on-supervised-convolutional-neural-network-and-its-major-applications/182292
http://www.irma-international.org/chapter/a-framework-for-profiling-prospective-students-in-higher-education/184095
http://www.irma-international.org/article/an-objective-compliance-analysis-of-project-management-process-in-main-agile-methodologies-with-the-isoiec-29110-entry-profile/169769
http://www.irma-international.org/article/an-objective-compliance-analysis-of-project-management-process-in-main-agile-methodologies-with-the-isoiec-29110-entry-profile/169769
http://www.irma-international.org/article/experiment-study-and-industrial-application-of-slotted-bluff-body-burner-applied-to-deep-peak-regulation/332411
http://www.irma-international.org/article/experiment-study-and-industrial-application-of-slotted-bluff-body-burner-applied-to-deep-peak-regulation/332411
http://www.irma-international.org/chapter/open-data-repositories-in-knowledge-society/184151

