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ABSTRACT
Although it has been shown that all current indexing techniques degrade
to linear search for sufficiently high dimensions, exact answers are still
essential for many applications. A concept of “non-clustered” case is
proposed in this paper. And aiming at the characteristics of such case, a
new index structure named K-P-tree and a K-NN searching algorithm
based on it is presented. By starting with the Self-Organized Mapping
method, the partition procedure of K-P-tree does not depend on the
dimensionality. Furthermore, the partition locating and pruning also
benefit from the fact that only the inner borders between the partitions are
recorded merely via some hyper planes. The query experiments indicate
that K-P-tree outperforms many current k-NN searching approaches.

1. INTRODUCTION
In many multimedia applications, the multimedia objects are usu-

ally mapped to feature vectors in high-dimensional spaces and queries
are made on those features vectors. In these cases, one of the most
frequently used yet expensive operations is to find k-nearest neighbors
to a given query object.

Two surveys in [WSB98, GG98] provide background and analysis
on the index structures. These index structures are divided into two
major groups. One group is the space-partitioning methods like k-d tree
[Ben75, FBF77], K-D-B tree [Bob81] or hB-tree [LS90] dividing the
data space along predefined hyper planes in different dimensions on
respective levels. The major problem of space-partitioning methods is
that their consumption in memory is exponential to the dimensionality
and many of the sub partitions are empty and gratuitous. The other
group is the data-partitioning methods such as R*-tree [BKS90], X-tree
[BKK96], M-tree [PMP97], SR-tree [KS97], A-tree [SYU00] and
iDistance [CBK01] using some simple shapes like hyper rectangles or
hyper spheres to bound the pattern clusters. Unfortunately such meth-
ods have to confront the complicated problem of handling overlaps and
indexing the edges.

Some data clustering approaches, such as LVQ [Koh01], CURE
[GRS98], and MACT/SACT [QQZ01] have been introduced into this
area. But they mainly aim at solving the data mining problem and
identify the clusters, while the retrieval acceleration is usually under
minor consideration.

In [WSB98], with several observations and analyses, it shows that
all current indexing techniques degrade to linear search for sufficiently
high dimensions. Hence in [WSB98] and [GIM99], they resort to the
solution without exact answers, and some techniques are employed for
approximated k-NN search.

However, since index is solely an auxiliary structure to accelerate
the information retrieval, it is somewhat irrational to confine the host
applications to the error-tolerant. Although the optimizing problem of
similarity search is invincible in theoretically high dimensionality, ex-
act answers are still essential for many applications.

The research in this paper is to advance the solution of k-NN
searching problem in a distribution case where the patterns cannot be
grouped by distinct borders.

2. NON-CLUSTERED CASE
Most current approaches attempt to develop a universally appli-

cable system and they overlook the peculiarity of the pattern distribu-
tion. Actually, to differentiate the density level is very important in this
process.

A critical concept to describe distribution density is cluster
which usually refers to a subset of the patterns, where the distances
between its members are far less than those between its members and
other patterns.

If the patterns are distributed densely in some “natural” clusters
with distinct borders, the similarity searching problem is well solved.

(1) If the distances between clusters are far larger than the cluster
sizes. The patterns are densely distributed in some clusters, and the sizes
and the shapes of those clusters are neglectable during the search pro-
cess.  It is enough to represent the clusters only with their centers.

There are many approaches to find the centers, e.g. Self-Organized
Map [Koh01] proposed by Kohonen.  And after fast centers finding,
one can locate any of these clusters only by their centers.  Such simple
representation and locating method are enough and efficient for this
case.

Even this assumption does not hold if in some local area, the
strategies in [PMP97, YL02] have been propsed to stipulate that the
clusters locating is still strictly accurate.

(2) If the distances between clusters are close to the cluster sizes,
the cluster sizes and shapes are not neglectable. The data clustering
techniques in [GRS98, QQZ01, Koh01] must be employed to recognize
the clusters and to delineate the cluster borders. And the problem of
indexing each cluster recursively reduces to original one at a smaller
scale.

Nevertheless, if the distances between clusters are far less than the
cluster sizes, it is probable that there are no “distinct” borders between
the “clusters”. This case is very prevalent, e.g. the uniform distribution
data. What is more, even if the original data can be grouped into clus-
ters, it is still probable that there is no distinct border within individual
groups. In fact, under the premise of uniform distribution, it has been
shown that most of the current index structures and similarity search
algorithms, including the latest ones like A-tree and iDistance, deterio-
rate dramatically when dimensionality increases.

Hence it leads us to focus on the last case of distribution. Before
presenting the definition of “non-clustered”, we shall introduce some
related notations.

Given a set of patterns denoted Patterns  and a division of

denoted π.  π is a class of pattern sub sets and each member of π  is called
a :

Definition 2.1 , π={C
i
, i= 1,2,..., k} where        and

∅=∩ ji CC .  Suppose the center of a class is denoted by     , then

we use the cluster radius to describe the size of     , which is defined as

ir = }|),(max{ ii Cxxcd ∈ .
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usually with some additional ones, the child partition represents a smaller
region.

For neighborhood preservation, it is advantageous to designate
each pattern to its nearest reference vector. Under such premise, we can
easily compute the enclosed partitions with the reference vectors. Be-
cause it is not difficult to prove that the border segments between two
pattern sub sets are a pair of hyper planes with negative directions to
each other, which locate in the middle of the respective reference vec-
tors. And the pair of hyper planes is orthogonal to the line through the
two reference vectors.

Given two pattern sub sets iX  and jX  (i≠j), whose reference

vectors are c
i
 and c

j
, and whose enclosed partitions are P(B

i
) and P(B

j
),

respectively. The border segments between X
i
 and X

j
 are ),( αqHb = and

)','(' αqHb = , kl ,...,1= , where

, and        .
Obviously it is profitable to compute only one border segment in

each pair and to store them together in the upper level. In each node of
K-P-tree, a bitwise mask indicates the valid border segments for the
corresponding partition. Likewise, another bitwise string indicates the
directions for those valid border segments.

As shown in Figure 4.1, a node of the K-P-tree has the following
structure:

TPartition : (border_mask, border_directions, segments, patterns,
children), where

border_mask and border_directions are BITWISE elements men-
tioned above.

segments refers to the border segments in the next level, which is
an array of hyper planes with size of NUM_SEGMENTS, where

NUM _SEGMENTS :=         ; //k is the partition count in each
level

As we know, if  }0{−∈ nRq , α∈ 1R , then the (n-1)-dimension

set H(q,α) = {x∈ nR  | x ⋅ q = α} defines a hyper plane in R
n
. Hence we

use the pair (q, α) to represent a hyper plane.
patterns is the entry for the set of vectors within the enclosed

partition defined by segments. It is a null pointer for intermediate nodes,
children are the entries to the child nodes.

The index construction for K-P-tree is simple: (1) Get the refer-
ence vectors by means like SOM; (2) Divide the pattern set by designat-
ing each pattern to it nearest reference vector; (3) Compute the border
segments, afterwards log the indicator of validity and directions
(border_mask and border_directions); (4) Recursively apply the proce-
dure in steps (1)-(3) on each sub pattern set until the size of which is less
than a given leaf threshold.

4. SEARCH ALGORITHM
The search algorithm comprises a main procedure and two subrou-

tines to locate a leaf partition and to judge the intersection.

( , )i jd C C min{ ( , ) | , }i jd x y x C y C∈ ∈=

nX R∈

xc . XC  

And the minimum distance between the respective members from
two classes  and  (i≠j) is used to describe their cluster distance:

Definition 2.2
Definition 2.3 Given a threshold δ (e.g. δ=10 or δ=100), two

classes C
i
 and C

j
 (i≠j) are δ-mergable iff  d(C

i
, C

j
)>δ×max{r

i
, r

j
}.

For convenience, we will use the term mergable short for δ-mergable
unless otherwise stated.

When the mergable predicative holds for C
i
 and C

j
, it means C

i
 and

C
j
 are so close in some direction(s) that they can be merged into one

cluster.
For convenient expression, we define the following boolean func-

tion for the mergable predicative:                =1 if C
i
 and C

j
 are mergable;

Otherwise  =0.  It is obvious that       =
Definition 2.4

The degree function of a class  returns the connectivity between
other classes.

Definition 2.5 A division  is

clusterednon −−θ  iff  kE /)(π >θ.
Here E(.) is the mathematical expectation and θ is a given thresh-

old, say, θ=0.5 or θ=0.9. Likewise, in contexts without confusion, we
use the term non-clustered short for θ−non-clustered .

Definition 2.6 A pattern set Patterns is non-clustered iff all divi-
sions of Patterns are non-clustered.

When the non-clustered predicative holds for a pattern set Pat-
terns, it means by any way we divide Patterns, each class can always be
merged with most of the other classes. The whole pattern set behaves in
integrity and there is no way to find some “natural” borders to separate
its members. The problem can be simplified as dividing a high-dimen-
sional sub space with a special shape, as well as locating and pruning the
partitions.

In this paper, a new approach is proposed to solve the problem in
the last case. By starting with the SOM method, our partitioning method
does not depend on the dimensionality. Furthermore, the partition lo-
cating and pruning also benefit from that only the inner borders between
the partitions are recorded merely via some hyper planes.

3. DATA STRUCTURE
In order to construct a balanced index structure, before dividing the

pattern set, we should get its compact form.
Definition 3.1 Suppose        is the distribution of a stochastic

variable x, and           is the distribution of another stochastic variable

      is the set of reference vectors of X iff                       .  Here )(⋅p
is the probability density function.

There are many methods to get the reference vectors, one of
which is the Self-Organizing Map (SOM) [Koh01]. With proper con-
figuration, the output of SOM approximates the original distribution
with a much smaller set of reference vectors. And each reference vector
is the centroid (mean value) of its corresponding pattern set.

In our approach, some sub spaces are defined to enclose each pat-
tern sub set and the inner borders between these sub sets.

Definition 3.2 The partition defined on a given set of hyper
planes B  is a subspace of Rn, denoted P(B),  where

)(BP ={ nRxx ∈| 0>−⋅∧ αqx , for all BqHb ∈= ),( α }.

Here B is called the border of P, each Bb ∈  is  called a border segment

of P(B).
Definition 3.3 P(B) is the enclosed partition of vector set                    .

(In the pseudo code listed below, without confusion, the term “enclosed”
will be omitted.)

Definition 3.4 P(B
1
) is called child partition of P(B

0
)

and P(B
0
) is called parent partition of P(B

1
). It is easy to see that

)( 1BP ⊆ )( 0BP .

A child partition inherits all border segments from its parent. And

( , )i jCM C C

( , )i jCM C C ( , )i jCM C C ( , )j iCM C C

1

( ) ( , )
k

i i j
j
j i

Degree C CM C C
=
≠

= ∑

{ , 1, 2,..., }iC i kπ = =

n
XC R∈

( ) ( )xp x p c=

Figure 4.1 The K-P-tree structure
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The first subroutine follows the definition of half-space: First com-
pute the location of input pattern, which is stored in the bits of
location_code. Afterwards, by masking the invalid bits and comparing
with the border segment directions indicator, only one child partition is
located. Then by recursively applying LocatePartition procedure, we
get the process in pseudo C codes to locate the leaf partition which the
input pattern belongs to.

The partition locating in (1) has been presented in the preceding
section and the exhaustive search in (1) and (3) is simple. To determine
whether a given partition contains one or more k-nearest neighbors in
step (2), we make use of the property of intersection.

Consider maxmin kr = }|),(max{ KNNyyinputd ∈ ,

where KNN  is the set of k-nearest neighbors. We denote

),( maxmin krinputS = }),(|{ maxmin krxinputdx < . It is easy

to see that ),( maxmin krinputS  is a hyper sphere and

),( maxmin krinputSKNN ⊆ .  Hence it is easy to see that given

an enclosed partition leafBP ≠)(  and its pattern set

)(BPPS ⊆ , there will be ∅≠∩ KNNPS  iff  Bb ∈∃ ,

b intersects the hyper sphere ),( maxmin krinputS .

During the pruning process, since maxminmaxminˆ kk rr ≥ ,  if b

does not intersect the hyper sphere )ˆ,( maxmin krinputS  for any

Bb ∈ , then the partition P(B) and its pattern set PS can be safely

pruned.
A static pruning is applied in the main procedure as presented

above, where )ˆ,( maxmin krinputS is invariable during the pruning

process. Some dynamic strategies can be employed. For example, when
a leaf node is popped from Queue, the exhaustive search, k_NN_Search0,

is applied to Possible patternsnode.∪  to get more accurate

maxminˆ kr  for further pruning. Moreover, some heuristic information,

say ),( icinputd , can be used as the key to sort the Queue in addi-

tion to dynamic adjusting maxminˆ kr . With these dynamic strategies,

the pruning effect can be enhanced so that step (3) benefits, though the
step (2) suffers from the cost of additional operations.

5. QUERY EXPERIMENTS
The purpose of the experiments is to test the query performance

of our method and several current multi-dimensional index structures
with varying dimensionality. The selected approaches in comparison
were iDistance [CBK01] on behalf of data partitioning with hyper spheres,
A-tree [SYU00] on behalf of data partitioning with rectangles and hB-
tree [LS90] on behalf of space partitioning.

Figure 5.1 Performance of query on synthetic data with varying
dimensionality
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(a) Query on uniform distribution data 
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(b) Query on Gaussian distribution data 

 

#define Positive( x , h )  ( 0.. >−⋅ αhqhx ) ? 1 : 0; 

function LocatePartition(VECTOR input , TPartition parent ) : TPartition 

{ 
BITWISE location_code; 
for(i=0;i<NUM_SEGMENTS;i++) 

location_code[i] = Positive( input , parent .segments[i]); 

for each child of parent  do 

if (location_code & child.border_mask == child.border_directions) 
return child; 

} 
 

function LocateLeaf(VECTOR input , TPartition root ) : TPartition 

{ 

TPartition child := root ; 

while( child  is not a leaf) 

child := LocatePartition( input , child ); 

return child ; 
} 

 
The second subroutine, Intersectant, and the main procedure are list below. 

function Intersectant (VECTOR input , REAL maxminˆ kr , TPartition child ) : BOOL 

{ 
for j:=1 to NUM_ SEGMENTS do 

if child .border_mask[j] then 
{ 

y := 
2||||

)(

q

qqx
x

⋅−⋅− α
; 

if 
maxminˆ),( kryinputd <  then 

return true; 
} 

return false; 
} 

 

function k_NN_Search(VECTOR input , int k , TPartition root ) : Pattern_Set 

{ 

leaf := LocateLeaf( input , root ); 

result0:= k_NN_Search0( input , k , patternsleaf . ); 

maxminˆ kr := max{ ),( yinputd }, where ∈y  result0; 

Queue := { root }; Possible := ∅ ; 

while( ∅≠Queue ) 

{ 

node :=pop( Queue ); 

if node is not a leaf then 

for each child of node  do 

if Intersectant( input ,
maxminˆ kr , child ) then 

Append child  to Queue ; 

else 

Possible := Possible patternsnode.∪ ; 

} 

return k_NN_Search0( input , k , Possible ); 

} 

The main function, k_NN_Search, consists of three steps: (1) an
exhaustive search procedure, k_NN_Search0, is employed on the leaf
partition which the input pattern belongs to; (2) a pruning process is

employed to find all possible partitions partitions with maxminˆ kr ; (3)

the exhaustive search will employed again on the possible pattern set.
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All the experiments were performed on a PC with AMD Athlon
850 CPU, 512MB RAM and several GB hard disk space. To avoid the
interference of I/O cost, we configured all the index structures and all
vector data stored in the main memory.

We evaluated the structures on synthetic databases of two typical
kinds of non-clustered data sets by searching the nearest neighbor of a
randomly generated vector. The first was uniform distribution and the
second was Gaussian distribution with some randomly chosen peaks. The
size for all data sets was 10,000, and the dimensionality ranged from 5
to 100 with step size of 5. For K-P-tree, we used k=6 for each level. For
convenient observation, the query process was repeated by 1,000 times
and the query time consumed is shown in Figure 5.1(a) and 5.1(b).

In our experiment, we also used real data, which are color histo-
gram vectors extracted from a clipart database with size of 7,600. Since
there was no predefined relationship between these selected pictures,
they can be deemed as non-clustered data. The dimensions selected in
this experiment are 3, 8, 27, and 64. The input vector was also ex-
tracted from a picture which is randomly selected from a picture set SS.
We configured half pictures were contained in DB while the other half
was not. Likewise, the query was also repeated by 1,000 times and the
query time consumed is shown in Figure 5.2.

6. CONCLUSION
In this paper we have pointed out the importance of discriminating

the distribution density, based on which we proposed the concept of
“non-clustered case”. Aiming at the characteristics of such distribution
we have presented a hierarchical index structure named K-P-tree and a
k-NN searching algorithm based on it. By partitioning the patterns
based on SOM and only storing the inner borders via the simplest shape,
hyper planes, our method achieve very good searching efficiency. The
query experiments indicate that K-P-tree outperforms many current k-
NN searching approaches such as iDistance, A-tree and hB-tree. Fur-
thermore, the structure of K-P-tree is so flexible that it can be applied
to various applications.
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