
712 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
The apparent lack of design information is one of the most significant
barriers that system developers face to reuse or change component-based
information systems. This paper tackles the problem by presenting and
exemplifying the frameworks of component context and its hypertext data
model. It addresses the possible linking of contextual knowledge to
components, including the conceptual dependencies of component
construction, reuse, and implementation, as well as the rationale behind
design and reuse processes. Furthermore, it illustrates the hypertext
approach to contextual knowledge representation, which provides ways
for users to express, explore, recognize, and negotiate their shared context.

1 INTRODUCTION
In order to succeed in collaboration, a component based develop-

ment (CBD) environment should provide ways for users to express,
explore, recognize, and negotiate their shared context. The context is
elaborated in terms of the specific application domains and specific
intentions, which increase richness of interactions among stakeholders
while avoiding repetition, and thereby enhancing reusability.

As Jones [1] indicates only 15% of the requirements for a new
system are unique to the system while the remaining 85% comes from
requirements of existing systems. Information systems development
(ISD) is hereby a process to retrieve and adapt reusable components.
The component retrieval process is contextual: a system designer is
faced with specific application domains which he looks with some de-
sign decisions in mind. The support of the retrieval process requires that
knowledge should be provided about contexts in which component can
be used. Generally, a component repository does not carry information
about the possible use situations, and little semantic support can be
provided in the search task. Our view is that knowledge about the use
context of components needs to be formalized, stored, and presented
with components.

Context exists at various layers of understanding and can be de-
fined and used from many perspectives due to different situations. In a
CBD environment, a context forms specific relationship types among
components and its development environment [2], such as the concep-
tual or semantic relationships between components, the domain spe-
cific relationships between components and its development environ-
ment, and the rationale of component design and reuse [3]. The contex-
tual knowledge will benefit system development activities by increasing
available knowledge and richness of interactions between components
and users; capitalizing on existing knowledge and previous experience of
stakeholders involved in the system development project and decreas-
ing difficulties resulting from individual differences in understanding in a
specific application domain.

However, current modeling techniques do not document the rea-
soning and the rationale behind the suggested solution. The design mod-
els are often not communicative, and descriptions cannot be fully un-
derstood by users and stakeholders [4]. This makes it difficult to under-
stand models and reuse older ones or parts of them. The purpose of this

paper is to present the taxonomy of contextual knowledge for compo-
nents generated during system analysis and design, and to build a hypertext
data model for further implementation. The specification of compo-
nent context recapitulates our preceding research in component defini-
tion [2], at the same time the data model represents solutions to com-
ponent context definition and utilization.

2 COMPONENT CONTEXT IN SYSTEM ANALYSIS AND
DESIGN

Understandability and readability of a component is crucial for its
reuse and evolution. While component interface provides essential in-
formation, in order to select and reuse a component various forms of
contextual knowledge is needed, including the domain description, the
conceptual structure and dependency, and the rationale that records
predictable and unpredictable ways and environments to facilitate reuse.
An extensive context framework has to be developed in order to pro-
vide enhanced services in the reuse and the system development pro-
cesses. The framework must include both the static information derived
from component concept and content and the ongoing arguments and
decisions which reveal CBD processes. Accordingly, we incorporate the
conceptual dependency and the rationale in the component context
framework.

2.1 Conceptual Dependency
With the growing number of concepts and the increasing interde-

pendency of ISD methodologies, the components generated from design
models become increasingly complex. They are often designed with
extremely subtle dependencies on other components that are not ex-
plicitly described [5]. However, the construction and maintenance of
component-based system analysis and design models require clear under-
standing of the dependencies between components. Conceptual depen-
dencies between components exist thereafter. The conceptual depen-
dency, as determined by conceptual semantics, forms a way of repre-
senting the relationships between components based on a particular
meaning of the concepts [6]. It implies the information about how
components may and should be used or have been reused in conjunction
with other components. There are varied conceptual dependencies with
wide variations in the format and content across different contexts, e.g.
the definition dependency, the reuse dependency, and the implementa-
tion dependency. Clearly, the dependencies between components are
necessary and desirable. They need to be clearly expressed by compo-
nent designers and well understood by users.

Definition Dependency. A definition dependency from a con-
cept CPx to a concept CPy is created if CPx is used in the definition of
CPy [7]. In short, it represents part-of relationships among compo-
nents. The part-of relationships always exist in component-based sys-
tems. They are closely interrelated, but difficult to track in a complex
system design if the tool does not facilitate the representation of the

Component Context Specification and
Representation in System Analysis and

Design
Zheying Zhang and Janne Kaipala

Department of Computer Science and Information Systems
University of Jyväskylä, PL 35, FIN-40351 Jyväskylä, Finland

zhezhan@cc.jyu.fi, jka@it.jyu.fi

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 713

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

definition dependency. For example, a small granularity level compo-
nent, like the class PhoneNumber, is always involved in one (or more)
relatively large granularity level component(s), like a class diagram
specifying the structure of phone book. Moreover, components can be
used as a part of a “larger” component on the same granularity level for
a wider or more complete definition, like the relationship between a
state transition diagram and the decomposed diagrams therein.

Reuse Dependency. The introduction of component technology
into system analysis and design is likely to require a major paradigm
shift in design practices in order to better incorporate reuse. Some com-
ponents are closely related by means of reuse. The reuse dependency
identifies the conceptual adaptation between a reusable component and
the target ones. In general, it can be divided into “reuse-by-copy” and
“reuse-by-reference”. Reuse-by-copy occurs when the component user
copies (parts of) a component and changes it to meet local needs.
Reuse-by-reference on the other hand requires that the same compo-
nent is used and shared by all users. The reuse dependency indicates the
ways to replace or update a component. For example, any modifications
on a component will reflect the components having “reuse by refer-
ence” dependencies on it, and component users thereby should inspect
all reuse related components thoroughly before making any modifica-
tion.

Implementation Dependency. An implementation dependency
describes how a component depends on other components for its imple-
mentation [8]. It connects the components that specify the same prob-
lem domain or solution but are generated at different development stages.
The implementation dependency presents a traceable relationship be-
tween components from the high level requirements down to the final
implementation, and it thus helps users to trace components’ imple-
mentation in both forward and backward directions [9, 10]. It enhances
reuse by enabling the use of high-level requirement components as the
basis to select lower level design or code components [9-11]. Moreover,
it enables to analyze the impact of changes in requirements to the rest
of the design [10, 11].

The different types of dependencies help designers easily keep
track of components at different system development stages, and their
interrelationships. Through the definition dependency and reuse depen-
dency component users can see the impacts of possible component
update and replacement: “Which other components use this compo-
nent?” or “Which components are (re)used by this one?”. Furthermore,
when different types of dependencies have been calculated, it is possible
to create a component dependency graph for the design project, by
which system designers have the possibility of marking selected compo-
nents as critical, to indicate that they must not be affected by a compo-
nent update or replacement, which provides support for component
configuration management and change management.

2.2 Rationale
Successful ISD stories address that knowledge from the past and

from various stakeholders is used in its processes. Rationale captured in
system analysis and design, is one way to keep such knowledge. It in-
cludes decisions, alternatives, arguments, and assumptions [11-15]. Gen-
erally, the rationale varies widely in quality, formality and in the level of
detail across different components and the discussion issues [10]. In a
component-based system analysis and design, the rationale records the
understanding of why a component has been developed and reused the
way it has. More specifically, it records distinct purposes and concerns
from component designers and users. On one hand, component design
involves decisions and assumptions that drive component reuse, on the
other hand, the component reuse process produces feedback that sup-
ports component maintenance and system evolution [16, 17]. While
considering the different purposes of component context, we distin-
guish between the design rationale and the use rationale.

Design Rationale. In practice, the design rationale recorded by
component designers serves as an externalization of a design for both

component users and designers, while it communicates design informa-
tion to them. Consequently, design rationales provide domain informa-
tion and answer specific questions of component definition and mainte-
nance. A well-designed component can be easily reused in different
design scenarios within the same domain. Therein, design rationale is an
ideal way for component designers to record the assumptions of diverse
design scenarios and to supervise the component reuse process by sug-
gesting component users that where and how the component should be
modified to meet a new set of requirements.

Use Rationale. In general, component users capture use rationale
in the sequential stages of a component reuse process: search, selection,
adaptation and integration [3]. Accordingly, use rationales can be cat-
egorized according to these stages. The rationale under this context has
two major functions. On one hand, it reflects the scenarios of using a
component, on the other hand, it evaluates the component complexity
and reusability and provides feedback for component maintenance.

The loss of design information becomes a problem when systems
have to change to meet unanticipated requirements. The engineers re-
sponsible for system evolution must analyze the design and infer the
reasons for particular design choices. As a reference to the system engi-
neers, the rationale identifies the justification for the evolution of sys-
tems by recording component design and reuse activities as the argu-
ments for and against the alternatives and the final decisions, which will
significantly decrease the cost of system evolution [16, 17]. Moreover,
a chronological display of the rationales provides clear understanding of
the component evolution process, facilitating maintenance and reuse.

3 LINK TYPES FOR CONTEXTUAL INFORMATION
REPRESENTATION

Hypertext is a feasible approach to model integration and context
representation [11, 18-24] especially for the rationale that can be cap-
tured any time at the analysis and design stage. It represents and inte-
grates contextual information by means of nodes and links. Nodes rep-
resent components and their contextual information while links repre-
sent their relationships. These links can carry different types of infor-
mation, such as the conceptual dependencies and the rationale. Accord-
ingly, we distinguish between three types of traceability links: associa-
tion, annotation and debate links, as shown in Table 1. These links are
applied according to the link types presented by Oinas-Kukkonen [23],
and we further consider the reuse subtype links.

Association Links are defined mainly to represent the conceptual
dependencies between components. In practice, they represent rela-
tionships between related artifacts such as components, documents, a
part of a component, and a part of a document. They are generated to
let users perform several tasks during design: track the composition of
components, track the modification and refinement history of a com-
ponent, manage the repercussions of changes in one on other compo-
nents that reuse and depend on it [10], identify the requirements related
to components, and ensure consistency between the components in the
successive stages of the life cycle. Due to the diverse roles which asso-
ciation links take in different contexts, further link semantics can be
expressed by the subtypes, like the definition dependency (e.g. is-part-

Table 1. Types of links for component context representation

Traceability
Link Type

��������	 Contextual
knowledge

Association Definition dependency: is-part-of
Reuse dependency: is-reused-by-
{copy, reference}
Implementation dependency: is-
implemented-by

Conceptual
dependency

Annotation

Debate

Design rationale: design rationale
Use rationale: rationale-for-
component-{search, selection,
adaptation, integration}

Rationale

714 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of), the reuse dependency (e.g. reuse-by-copy) and implementation de-
pendency (e.g. implements).

Annotation Links provide a way to connect information, namely
an annotation node, to a (part of the) component or a (part of the)
document. In essence, they support reuse processes by capturing infor-
mation related to a particular design situation, and component reuse and
maintenance process. Annotation links lead to annotation nodes that
allow free text representation, thereby enabling the recording of any
information that demands text representation, including textual design
rationale. The more structured approach to capturing arguments over
design decisions is provided by debate links.

Debate Links represent the argument-based rationale behind com-
ponents including reasons for evolutionary steps and contextual infor-
mation in the design and reuse phases. They integrate the stakeholders’
arguments to the design components. In order to provide a clear over-
view of the captured rationale, we can further categorize rationale in
line with phases of the life cycle and the aspects of the issues to be
argued.

4 HYPERTEXT DATA MODEL FOR CONTEXTUAL
INFORMATION REPRESENTATION

In terms of component-based reuse, the hypertext data model has
two kinds of nodes: component nodes (or design elements inside a com-
ponent) and contextual information nodes (e.g. Questions, Answers,
Arguments and Annotations). As shown in Fig. 1, both types of nodes
can be sources or targets of links. Moreover, the link source can be
specified as a piece of text inside a node. As stated in section 3 we
propose traceability links to connect the component nodes and contex-
tual information nodes. Different types of traceability links are used
under different contexts.

Arrows in Fig. 1 demonstrate the information flows that are trace-
able between two types of nodes. In detail, the source of an annotation
link can be any node and the target is an annotation node. Similarly, a
debate link can start anywhere and the link target is a debate node. The
source and target of an association link can be any node.

Links have attributes such as subtype, keywords, creator, creation
time, which can be used to define further link semantics for reuse pur-
poses. The contextual information nodes can be organized into named
collections: Questions belong to ”debate spaces” and Annotations be-
long to ”annotation spaces”. Furthermore, debate nodes are linked by
using specific link types: Questions are linked to Answers by ”answers-
to-question”, and Arguments are linked to Answers by ”supports” or
”objects-to” links.

In order to demonstrate the representation of component con-
text, we discuss a mobile phone user interface design scenario within the
phone product family. Suppose that the company has created a mobile
phone user interface design architecture, domain models, and a set of
reusable components to quickly deliver mobile phones in various ver-
sions. In this scenario, the company plans to deliver a user interface
design of mobile phone version 4.4 by reusing components from the
prior 4.2 version. Compared with version 4.2, a new feature in version
4.4 is an improved calendar that provides a “structured date editor”.
Accordingly, the requirements list of version 4.4 is created by reusing
the requirements list version 4.2. Meanwhile, new requirements are added,
including the requirement ”The Calendar shall support structured date
input”. As shown in Fig. 2, in the process of creating the new require-

ments list, traceability links such as reuse dependency (arrow 1) have
been created, and the implementation dependency (arrow 2) was traced
to get the corresponding design model components of version 4.2. Hereby,
the design models are reused by copy (arrow 3), and a new implementa-
tion dependency is created between the requirements list and the design
model components (arrow 4). At the same time, structured date input
function is added into the Calendar component, and the rationale about
the different implementation alternatives and decision related to the
structured date input function are recorded by the annotation link (ar-
row 6) and the debate link (arrow 7).

In this brief scenario, information is captured by creating different
types of contextual links during the analysis and design processes. The
links represent various conceptual dependencies and rationales. Although
the presented scenario is simple and uncompleted, as compared with the
phone development life cycle, masses of contextual information and 14
contextual links have been created. Without the context specification
and its hypertext representation, the substantial knowledge about the
component logic and semantic structure and about the design rationale
is buried in the development process and is difficult to remember, re-
trieve, and reuse after the project.

5 CONCLUSIONS
Component context drives reuse activities from the requirements

analysis towards the final implementation in a CBD environment. How-
ever, the benefits of component context will not come to full fruition
unless they are elaborately defined and directly integrated into the basic
development activities of ISD [25]. In this paper we have tried to
increase the understanding of component context in perspectives of
conceptual dependencies and rationales that supports CBD. The differ-
ent types of dependencies and rationales assemble the different aspects
of component context, which constitutes the conceptual foundation of
component reuse. They are provided as an adjunct part of a component
and embedded in the CBD processes. Furthermore, the mechanisms of
component context representation and the approach to facilitating the
contextual knowledge are proposed and demonstrated by showing the
hypertext data model which consists of two types of nodes (component
and contextual information) and three types of traceability links (the
association link, the annotation link, and the debate link). The hypertext
data model represents concepts and mechanisms to facilitate the repre-
sentation of syntax and semantics of components and the contextual
information between components and its design environment. We be-
lieve that once it is integrated to a CASE tool, the hypertext supported
CASE tool can better support information tracing and the interaction
between components and stakeholders. We expect this to alleviate the
difficulties resulting from individual differences in understanding the
system architecture and its components in a specific application do-
main and to make CBD more practical and effective.

Fig. 1. The hypertext data model

Fig. 2. Examples of different traceability links in a mobile phone user
interface design scenario

Information Technology and Organizations 715

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

REFERENCES
1. Jones, T.C., Reusability in Programming: A Survey of the

State of the Art. IEEE Transactions on Software Engineering, 1984.
10(1).

2. Zhang, Z. Defining Components in a MetaCASE Environ-
ment. Proceedings of the 12th Conference on Advanced Information
Systems Engineering (CAiSE*00). 2000. Stockholm, Sweden: Springer.

3. Zhang, Z. and K. Lyytinen, A Framework for Component
Reuse in a Metamodelling based Software Development. Requirements
Engineering Journal, 2001. 6(2): p. 116 - 131.

4. Bubenko, J.A. Challenges in Requirements Engineering. In-
vited talk at the Second IEEE International Symposium on Require-
ments Engineering. 1995.

5. Edwards, A., et al. Software Component Relationships. Pro-
ceedings of the eighth Annual Workshops on Institutionalizing Soft-
ware Reuse (WISR8). 1997. Columbus, OH.

6. Schank, R.C., Conceptual Dependency: A Theory of Natural
Language Understanding. Cognitive Psychology, 1972. 3(4): p. 532 -
631.

7. Castellani, X. Overviews of Models Defined with Charts of
Concepts. IFIP WG8.1 International Conference on Information Sys-
tem Concepts: An Integrated Discipline Emerging. 1999. Leiden, the
Netherlands.

8. Whittle, B., Models and Languages for Component Descrip-
tion and Reuse. ACM SIGSOFT, 1995. 20(2): p. 76 - 87.

9. Jarke, M., Requirements Tracing. Communications of the
ACM, 1998. 41(12): p. 32 - 36.

10. Ramesh, B. and M. Jarke, Towards Reference Models for Re-
quirements Traceability. IEEE Transactions on Software Engineering,
2001. 27(1): p. 58 - 93.

11. Barber, K.S., et al., Requirements Evolution and Reuse Using
the Systems Engineering Process Activities (SEPA). Australian Journal
of Information Systems, 2000. 7(1): p. 75 - 97.

12. Lee, J. and K. Lai, What’s in Design Rationale. Human Com-
puter Interaction, 1991. 6(3-4): p. 251 - 280.

13. Perry, D.E. and A.L. Wolf., Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering Notes,
1992. 17(4): p. 40 - 52.

14. Tracz, W., L. Coglianese, and P. Young, A Domain-Specific
Software Architecture Engineering Process Outline. ACM SIGSOFT
Software Engineering Notes, 1993. 18(2): p. 40 - 49.

15. Sommerville, I. and P. Sawyer, Requirements Engineering: A
Good Practice Guide. 1997: John Wiley & Sons. 391.

16. Monk, S., et al. Supporting Design Rationale for System Evo-
lution. Proceedings of the Fifth European Software Engineering Con-
ference. 1995.

17. Bratthall, L., E. Johansson, and B. Regnell. Is a Design Ratio-
nale Vital When Predicting Change Impact? - A Controlled Experiment
on Software Architecture Evolution. Proc. Conference on Product Fo-
cused Software Process Improvement (PROFES’2000). 2000. Berlin:
Springer-Verlag.

18. Bailin, S.C., et al. KAPTUR: Knowledge Acquisition for Pres-
ervation of Tradeoffs and Underlying Rationale. Proceedings of the 5th
Annual Knowledge-Based Software Assistant Conference. 1990.

19. Creech, M.L., D.F. Freeze, and M.L. Griss. Using Hypertext
in Selecting Reusable Software Components. Hypertext 1991. 1991.

20. Sutcliffe, A. Requirements Rationales: Integrating Approaches
to Requirements Analysis, Designing Interactive Systems: Processes,
Practices, Methods, & Techniques. Proceedings of DIS’95. 1995: ACM
Press.

21. Robbins, J.E., D.M. Hilbert, and D.F. Redmiles. Software Ar-
chitecture Critics in Argo. 1998 International Conference on Intelli-
gent User Interfaces. 1998. San Francisco, CA, USA.

22. Mannion, M., et al. Reusing Single Requirements From Appli-
cation Family Requirements. 21st IEEE International Conference on
Software Engineering (ICSE’99). 1999.

23. Oinas-Kukkonen, H., Improving the Functionality of Soft-
ware Design Environments by Using Hypertext, Department of Infor-
mation Processing Science. 1997, University of Oulu: Finland. p. 130.

24. Kaipala, J., Integrating MetaCASE Environments by Using
Hypertext - Conceptual, Functional and User Interface Considerations
in MetaEdit+, Department of Computer Science and Information Sys-
tems. 1999, University of Jyväskylä: Finland. p. 114.

25. Keller, R.K. and R. Schauer. Design Components: Towards
Software Composition at the Design Level. International Conference
on Software Engineering. 1998: IEEE Computer Society.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/component-context-specification-

representation-system/32119

Related Content

Synopsis Data Structures for XML Databases
Alfredo Cuzzocrea (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 1906-

1913).

www.irma-international.org/chapter/synopsis-data-structures-for-xml-databases/112595

Introducing ITIL Framework in Small Enterprises: Tailoring ITSM Practices to the Size of

Company
 Abir El Yamami, Khalifa Mansouri, Mohammed Qbadouand El Hossein Illoussamen (2019). International

Journal of Information Technologies and Systems Approach (pp. 1-19).

www.irma-international.org/article/introducing-itil-framework-in-small-enterprises/218855

Precordial Vibrations: Seismocardiography – Techniques and Applications
Mikko Paukkunenand Matti Linnavuo (2014). Contemporary Advancements in Information Technology

Development in Dynamic Environments (pp. 201-220).

www.irma-international.org/chapter/precordial-vibrations/111612

Research of Biogeography-Based Multi-Objective Evolutionary Algorithm
Hongwei Moand Zhidan Xu (2013). Interdisciplinary Advances in Information Technology Research (pp.

125-135).

www.irma-international.org/chapter/research-biogeography-based-multi-objective/74537

Rough Set Based Ontology Matching
Saruladha Krishnamurthy, Arthi Janardananand B Akoramurthy (2018). International Journal of Rough Sets

and Data Analysis (pp. 46-68).

www.irma-international.org/article/rough-set-based-ontology-matching/197380

http://www.igi-global.com/proceeding-paper/component-context-specification-representation-system/32119
http://www.igi-global.com/proceeding-paper/component-context-specification-representation-system/32119
http://www.irma-international.org/chapter/synopsis-data-structures-for-xml-databases/112595
http://www.irma-international.org/article/introducing-itil-framework-in-small-enterprises/218855
http://www.irma-international.org/chapter/precordial-vibrations/111612
http://www.irma-international.org/chapter/research-biogeography-based-multi-objective/74537
http://www.irma-international.org/article/rough-set-based-ontology-matching/197380

