
756 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT
We propose in this paper to jointly use the description logic (DL) and
probabilistic approaches to store documents in relational databases. The
description logic is used to generate a first database schema by reasoning
capabilities over the conceptual part of the documents. The resulting schema
is normalized. Indeed, we add to the DL knowledge base, which represents
the documents, some ontological assertions specified in the DL formalism.
Then probabilistic calculus is used to optimise the generated database schema
by computing some statistical measurements over the extensional part of the
documents.

1. INTRODUCTION
Document is the main information support in most organizations. It is

used as data source to store, visualize and exchange data. It represents the
most useful information support for the human beings and particularly the
end-users. Data in documents are semi-structured. This means that document
structure is not given, the data types are not defined and the data structure may
be absent, irregular, implicit or partial. These features make the description
and the manipulation of data easy. Databases are based on models which store
typed and well structured data (see Kappell, 2001) for a comparison of the
relational data model and the semi-structured data). Thus, it is difficult to
store semi-structured data in a conventional database management system.

In this paper we propose to create a correct database schema for semi-
structured data. We use the relational model which is the most efficient and
mature system in database technology to store and query large amount of data.
A normalized schema is produced from the conceptual level of the document.
To obtain this schema, we use two tools: the description logics (Borgida 1995)
to compute the database schema and some statistical measurements to opti-
mize this generated schema.

The combination of the description logic reasoning and probability al-
lows us to create a semantically correct database schema.

We consider two main groups of related works: the schema modeling
from the XML tree structure and from the DTD (Document Type Definition)
structure. The second paragraph presents our theory: the construction of the
schema and its optimization. A running example is given at the end of this
paper.

2. RELATED WORKS

2.1. Modeling the XML Tree Structure
In this approach, a XML document is considered as an oriented and la-

beled tree (Buneman, 1997 and Abiteboul, 1997) in which the internal nodes
represent the elements of the document, the leaves represent the data or the
attributes and the edges formalize the relations of element-sub-element inclu-
sion or element-attribute and are labeled by the name of the sub-element. A
tree is represented by several relational schemas. In the MONET data model
(Schmidt 2000), for a XML document, the tree represents all the binary rela-
tions between all the nodes of the tree and the relations associating the nodes
and their values or their attributes. A method of hybrid so-called storage has

been developed in the NATIX system (Kanne, 1999). In this approach, a XML
document is seen as a tree structure. An object storage model is used for the
physical level in which the sizes of the nodes and pages disks are considered to
optimize the storage of the document nodes. In (Florescu 1999), the authors
presented six schemas to represent the document graph into relational tables:
three for the edges and two for the leaves .

This approach is relatively well adapted for the design of wrappers for
federating heterogeneous data sources. Moreover, the rebuilding of the origi-
nal document is highly reliable and is very simple for exchanging the contents
of the database. It is done in a reduced time. We think that this model provides
a good medium to establish an algebra, especially for the operations on the
structure such as the navigation in the documents, the union, the intersection,
the subtraction between documents, etc. This model considers a XML docu-
ment as a tree structure. The syntactic aspects are obviously treated but the
semantic ones aren’t.

2.2. Modeling the XML DTD
A DTD (Document Type Definition) is a XML structure description for-

mat. In some applications, the lack of DTD makes difficult to extract similari-
ties between the structures of different XML documents and to find an optimal
common schema. The generation of the database schema from a DTD is a
simple and direct process: the content of the DTD represents a set of instruc-
tions defining the structure of the documents. The database schema design
from a DTD (Schmidt 2000, Shanmugasundaram 1999) can be made differ-
ently according to the data model to generate, namely relational model (Bourret
1999, Klettke 1999), object-relational model (Klettke 2000) or pure object
model (Christophides 1994).

The DTD modeling approach requires the existence of a DTD and pro-
duces a database schema dedicated to store XML documents. It validates the
DTD used to generate the database. This database is restricted to a dedicated
application and cannot be used with documents containing various structures.

2.3. Description Logic Approach
The description logic (DL) is a reasoning formalism at the conceptual

level. It provides users with various inference capabilities that allow them to
deduce implicit knowledge. Extending of database systems with logics capa-
bilities has been studied by different authors (Brodie 1989, Hacid 2000, Gõni
1995). In (Calvanese 1999), a XML DTD is represented in the DL formalism
as a tree structure using the f and r fillers to respectively specify the first and
the rest of an element. The TBOX is generated from the rules definitions by
creating the assertions from the DTD elements and rules. The reasoning
functionalities (instance validation, DTD inclusion, disjunction, equivalence,
etc.) are then performed on the knowledge base. In (Hacid 2000), an algorithm
of DL-based knowledge base generation is presented. It is generated from a
XML document and a database schema inference. This algorithm creates a
concept for each node and its definition assertion is a concatenation of all sub-
elements assertions until the leafs. The database schema is generated by calcu-
lating the lcs (Least Common Subsumer) of k objects, where k is a threshold.

XML Storage in Relational Databases:
An Approach Combining Description

Logic and Statistics
Mourad Ouziri, Christine Verdier

Laboratoire d’Ingénierie des Systèmes d’Information (LISI)
7,av Jean Capelle, 69621 Villeurbanne Cedex, France

{mouziri, cverdier}@lisi.insa-lyon.fr

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Information Technology and Organizations 757

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

3. NORMALIZED SCHEMA GENERATION AND
OPTIMISATION

The system proposed is at the junction of the DL and the XML tree
structure approaches. The DL approach offers a good tool to formalize the
knowledge, a well-known structure to extract semantic constraints. So, the
system is based on DL and probability to generate a normalized and optimized
relational schema to store and to query the XML documents collection. To
generate a normalized schema, semantic relations between the documents con-
cepts are necessary since the documents give only information on the struc-
tural relations between the concepts (entities). However, normalization is a
semantic level task that can’t be carried out only starting from the information
extracted from the XML documents. Semantics is represented by a domain
ontology that is merged as assertions in the DL-based knowledge base (KB)
which is created from the XML documents. The semantics is here extracted
from the total conceptual diagram implying all the terms of the domain.

The system is working as the following. For each document, the only
intentional part of a KB is created. The KB is developed in the DL formalism.
The lcs (least common subsumer) of each equivalent concept [Cohen, 1992]
are computed over the KB. These concepts are deduced from the ontology and
DL reasoning. The ontological assertions are taken into account because they
are useful to generate a normalized schema. Then, the schema generated is
optimized by reducing the number of generated tables. This is done by com-
puting the Bayes probability on the documents instances. The figure 1 pre-
sents the general architecture of the system.

3.1. Normalized Schema Generation
To generate the relational schema, the procedure presented in (Hacid

2000) is extended with the addition of the semantic relations between the con-
cepts of the documents. Indeed, the use of information concerning the seman-
tic nature is necessary because documents give only information on the struc-
tural relations between the concepts. Semantics is represented by a domain
ontology. Thus, the assertions generated from the XML documents represent-
ing the intentional definitions of their concepts are merged with those ex-
tracted from the ontology representing the semantic relationships between the
documents concepts.

The DL-based knowledge base is created following these steps (see
[Baader 1991] for the syntax and the semantic of the terminological construc-
tors used):

Step 1: Create a knowledge base from the XML documents collection.
For a document leaf l, we add to the KB the assertion : l ⊆ Type where

Type ∈ [String, Number, Date] is the concept representing the type of the
concept l extracted from the ontology.

Starting with the leafs and for a concept node C, we insert to the KB the
assertion C ⊆ ∀ C

l
 Π… ∀k. C

k
 for each outgoing arc labeled l,…, k of the node

C such that l ⊆ C
l
 and k ⊆ C

k
 are in the KB (see the paragraph 4).

Step 2: Using the synonym relationships given by a domain ontology, we
insert to the KB the assertions A ≡ C

A
 for each concept A, where C

A
 is the

canonical term of all synonym terms. For example, if Patient and Human are
two terms in the documents concepts and if we suppose that in the domain
ontology, the canonical term of all terms designing a person is Person, thus,
we add to the knowledge base the assertions:

Human ≡ Person Patient ≡ Person

Step 3: for the (N, N) entity relationships, we add to the KB the asser-
tions relating the concepts and specifying the common attributes. For example,
Patient and Doctor are two entities linked by the (N, N) association Exam
which has an attribute result. Our reasoning algorithm creates a third rela-
tional table which links the two tables corresponding to Patient and Doctor
and contains the common attribute result. With this end, we add to the KB this
ontological assertion:
Exam ⊆ ∀ examined. Patient Π ∀ examiner. Doctor Π ∀ result. String Π
(=1 examined) Π (=1 examiner) Π (=1 result)

and we modify the descriptions of Patient and Doctor by respectively adding,
the inverse of the roles examined and examiner (noticed examined-1 and
examiner-1) as follows:
Patient ⊆ … Π ∀ examined-1. Exam Doctor ⊆ … Π ∀ examiner-1. Exam

Step 4: now, the KB contains all the needed assertions representing the
documents concepts and their semantic relationships. So we can compute the
first relational schema from the KB. Its optimization will be presented in the
next paragraph. The relational schema corresponds to the most specific struc-
ture for each equivalent concepts. To get the equivalent concepts, we build a
graph G (V, A) where each node (n) represents a concept (C) and for each
equivalence (≡) relationship between two concepts C

i
 and C

j
, an edge is cre-

ated from n
i
 to n

j
, corresponding to concepts C

i
 and C

j
 respectively. The equiva-

lent concepts are obtained by computing connected sub-graphs of G. For each
connected graph, we compute the lcs concept of the concepts represented by
its nodes. A relational table is created for each lcs concept (Patient and Exam);
we call this table primary table. Its attributes correspond to lcs concept roles
(without inverse roles). We create tables also for the roles which do not partici-
pate in the lcs such as the roles address (of Patient) and doctor (of Exam). We
call these tables secondary tables.

3.2. Schema Optimization
A schema optimization is used to reduce the number of the tables gener-

ated at the previous steps. The normalized relational schema is generated from
the intentional part of the KB (TBOX) and the optimization operation is based
on the statistical calculus performed over the extensional part (ABOX). This
process is based on the data distribution (from the documents collection). The
roles of the secondary tables are put back in the primary tables and the second-
ary tables are deleted from the DB schema. The process is performed as fol-
lows. For each role, we compute two statistical values: the conditional prob-
ability and repetition frequency of a generated table attribute. A conditional
probability is calculated for each attribute of the secondary tables. If this at-
tribute probability tends towards 1 then the attribute is put in the primary table
and deleted from the secondary table. The second measure calculated is used
in the inverse sense of the first one. If the repetition frequency of an attribute
in a primary table is greater than a threshold, then this attribute is deleted from
its primary table and we create a secondary table for it. The two tables are
linked by a foreign key.

3.2.1. Conditional Probability
This measure is computed for each attribute of secondary tables. This

measure is aimed to reduce the number of tables that are generated during the
attributes transfer between the primary and secondary tables. The primary table
attributes can contain some null-value tuples when the attribute is not an at-
tribute of the lcs. If the number of null-value of an attribute is not large com-
pared to the size of its primary table then its is transferred from the secondary
table to the primary one. Therefore, there will be less joints when evaluating
queries. The conditional probability, P(<child> / < parent>), to have an ele-
ment child as sub-element (child element) of another element parent (parent
element) expresses the percentage of the element parent having the element
child as sub-element, over the documents collection. This probability is com-
puted using the Bayes theorem. Thus,

P(<child>.<parent>)
 P (<child> / <parent>) =

 P(<parent>)

758 Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

The element probability is calculated as:

occurrence number of <element>
P (<element>) =

 number of documents

by simplification we write,

 occurrence number of <child> as sub-element of <parent>
P (<child> / <parent>) =
 appearance number of <parent> in the collection

we formulate it as:

 ∑ S (<child>, <parenti>),∀ i∈ [1, n]
P (<child>/<parent>)=
 n

where n is the occurrence number of the element <parent> over the documents
collection, <parent

i
> is the ith occurrence of the element and S is a function

defined as:

1 if <child> appears at
 least once in <parenti>

S (<child>, <parenti>) =
 0 else

This probability is a correlation measure of an element <child> with its
parent <parent>. For example, if P(<address>/<Patient>) is greater than a
threshold (near to 1), then the attribute which corresponds to <address> is put
back from the secondary table (Patient1) to the primary table (Patient).

3.2.2. Repetition Frequency
This statistical measurement is used jointly with the conditional prob-

ability for the attributes of the primary tables. Some elements can appear more
than once in their parent elements. This corresponds to the (*, N) cardinality
between the elements. To avoid redundancy storage of the relational database
tuples, these elements are stored in separated tables from their parents tables.
For example, if the element doctor of Exam appears more than once, this sta-
tistical measurement is computed for this element to decide if we create or not
a separated table for the attribute doctor. The computation of this measure-
ment is performed for a child attribute over all the XML documents collection.
For an element <child> associated to an element <parent>, the repetition
frequency (FR) of <child> represents the average of repetition number of the
child element in its parent element over all the collection. It is computed as
follows:

 ∑ Nb(<child>,<parent i>),∀ i∈ [1, n]
FR (<child>, <parent>) =
 n

where n is the occurrence number of the element <parent> over the documents
collection, <parent

i
> is the ith element instance and Nb(<child>,<parent

i
>)

designs the number of elements <child> in the element <parent>. If
FR(<child>, <parent>) > threshold then we create a separate table to store
the attribute corresponding to <child>.

The thresholds values depends on the database size and mainly on the
attributes access frequency. In the figure 2, we present a complete algorithm
for generating a normalized relational schema for XML documents collection.

The thresholds values depends on the database size and mainly on the
attributes access frequency. In the figure 2, we present a complete algorithm
for generating a normalized relational schema for XML documents collection.

4. RUNNING EXAMPLE
In this section, we apply

the algorithm presented in the
previous section to a XML
documents collection repre-
sented by the two structures of
the opposite documents struc-
tures.

The knowledge base gen-
erated for these XML docu-
ments (extended with the on-
tological assertion Exam) is :

Patient1⊆ ∀ name.String Π ∀ address. String Π ∀ doctor. Doctor1 Π ∀
examined-1. Exam Π (≥ 1 name) Π (=1 address) Π (≥ 1 doctor)
Patient2 ⊆ ∀ name. String Π ∀ doctor. Doctor2 Π ∀ examined-1. Exam Π
(=1 name) Π (≥ 1 doctor)
Doctor1 ⊆ ∀ name. String Π ∀ result. String Π ∀ examiner-1. Exam Π (=1
name) Π (=1 result)
Doctor2 ⊆ ∀ name. String Π ∀ specialty. String Π ∀ result. String Π ∀
examiner-1. Exam Π (=1 name) Π (=1 result) Π (=1 specialty)
Exam ⊆ ∀ examined. Patient Π ∀ examiner. Doctor Π ∀ result. String Π (
=1 examined) Π (=1 examiner) Π (=1 result)
We compute now the lcs of equivalent concepts (manually created):
Patient = lcs (Patient1, Patient2) ⊆ ∀ name. String Π ∀ doctor. Doctor Π ∀
examined-1. Exam Π (= 1 name) Π (≥ 1 doctor)
Doctor = lcs (Doctor1, Doctor2) ⊆ ∀ name. String Π ∀ result. String Π ∀
examiner-1. Exam Π (=1 name) Π (=1 result)

The primary tables are Patient (n°, name), Doctor (id, name) and Exam (n°,
id, result). The secondary tables are Patient1(n°, address) and Doctor2 (id,
speciality). To optimize this schema, we have calculated these probabilities
over numerous XML documents:
P(<address>/<Patient>) = 0.98, then we bring back the address attribute to
the table Patient and thus we delete the secondary table Patient1 form the
schema.
P(<speciality>/<Doctor>) = 0.8, the domain experts says that the attribute
specialty is essential, thus, it may be queried frequently. To avoid many joints,
we bring back it to its primary table, Doctor.
Fr(<name>/<Patient>) = 1.05, then the name attribute is kept in its primary
table. The final schema is given as: Patient (n°_pat, name, address), Doctor
(id_dct, speciality), Exam (n°_pat, id_dct, result).

 Input: Semi-structured graph G = (V, A, r)
Output: Normalized relational schema
KB = GenKB (G); // generate the knowledge base of G
Ge = equivalenceGraph(KB); // construct the concepts equivalence graph
Cs = connected (Ge); // compute the connected sub-graphs of Ge
for each csi ∈ Cs // compute the lcs of the equivalent concepts

lcs = lcs ∪ computelcs(csi);
construct the non lcs concepts : nonlcs

end for
for each concept ci ∈ lcs create a table t_ ci_lcs;
for each concept ci ∈ nonlcs create a table t_ ci_nonlcs;
// Schema optimization
for each t_ci_nonlcs

for each attribute ai of t_ ci_nonlcs
 pi = P(ai / ci) // conditional probability
 if (pi > threshold)
 delete ai from t_ ci_nonlcs;
 add ai to t_ ci_lcs ;
 end if
end for

end for
for each t_ ci_lcs

for each attribute ai of t_ ci_lcs
 fi = FR(ai / ci) // repetition frequency
 if (fi >> threshold)
 delete ai from t_ ci_lcs;
 add ai to t_ ci_nonlcs ;
 end if
end for

end for

Figure 2. A normalized relational schema generation
algorithm

<Patient n°>
 <name> <\>
 <Doctor id>
 <name></>
 <speciality></>
 <result></>
 <\Doctor>
<\Patient>

<Patient n°>
 <name> <\>
 <name> <\>
 <address> <\>
 <Doctor id>
 <name></>
 <result></>
 <\Doctor>
<\Patient>

Information Technology and Organizations 759

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

5. CONCLUSION
We think that the handling of the information can be made in an effec-

tive way only if it is managed in a DBMS which offers a better effectiveness in
terms of storage quality, speed and queries processing. For our application
domain, this led us to study the storage of the medical files, represented in
XML documents, in relational databases. The lack of schema in XML docu-
ments led us to study the techniques of automatic relational schemas genera-
tion starting from XML documents. We show that only the document couldn’t
be used to generate a normalized schema. We add a semantic knowledge to the
system, represented by a domain ontology. This knowledge enables us to gen-
erate a normalized schema in the third normal form. We have used some arti-
ficial intelligence techniques namely, description logic, which allows us to use
many reasoning services at the conceptual level. A knowledge base in the de-
scription logic formalism is created from the XML documents and is merged
with the ontological assertions to express all the semantic information about
the documents. We use some probability measurements over the documents to
reduce the relational tables number. Consequently, we optimize the queries
evaluations.

6. BIBLIOGRAPHY
Abiteboul S. Querying semi-structured data. In Proceedings of ICD, 1997.
Baader F., Hanschke, P. A Scheme for Integrating Concrete Domains

into Concept Languages. IJCAI 1991: 452-457, 1991
Borgida A. Description Logics in Data Management. IEEE Transactions

on Knowledge and Data Engineering, 1995.
Bos B. “The XML Data Model”. http://www.w3.org/XML/

Datamodel.html, 1999.
Bourret R., Bornhövd C., Buchmann A. A Generic Load/Extract Utility

for Data Transfer Between XML Documents and Relational Databases. Tech-
nical report DVS99-1 Dept of CS, Darmstadt univ, Germany 1999.

Brodie M.L. Future intelligent information systems: AI and database tech-
nologies working together. In J. Mylopoulos and M.L. Brodie, editors, Read-
ings in Artificial Intelligence and Databases, p 623-640. Morgan Kaufmann,
1989.

Buneman P. Semi-structured data. In Proceedings of the Sixteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
1997.

Calvanese D., De Giacomo G., Lenzerini M. Representing and reason-
ing on XML documents: A description logic approach. Journal of Logic and
Computation, 9(3): 295-318, 1999.

Christophides V., Abiteboul S., Cluet S., Scholl M. From Structured
Documents to Novel Query Facilities. In Proc. Of ACM SIGMOD Conf. On
Management of Data, Minnesota, 1994.

Cohen W., Borgida A., Hirsh H. Computing least common subsumers in
description logics. In Proc of AAAI-1992, p 754-760.

Florescu D., Kossmann D. A Performance Evaluation of Alternative
Mapping Schemes for Storing XML Data in a Relational Database. Technical
Report, INRIA, France, 1999.

Gõni A., Blanco J.M., Illarramendi A. Connecting knowledge bases with
databases: a complete mapping relation. In Proc. of the 8th ERCIM Workshop.
Trondheim, Norway, 1995.

Hacid M-S, Soualmia F., Toumani F. Schema Extraction for
Semistructured Data. Proc. of the 2000 Int Workshop on DL, Aachen, Ger-
many, p 133-142, 2000.

Kanne C., Moerkotte G. Efficient Storage of XML Data. Technical Re-
port, University of Manheim, Germany, 1999.

Kappell G., Kapsammer E., Retschitzegger W. ML and Relational Data-
base Systems – A Comparison of Concepts. In Int Conf on Internet Comput-
ing (IC’2001) Las Vegas, USA.

Klettke M., Meyer H. XML and Object-Relational Databases Systems:
Enhancing Structural Mappings Based On Statistics. WebDB (Informal Pro-
ceedings) 2000.

Schmidt A., Kersten M., Windhouxer M., Waas F. Efficient Relational
Storage and Retrieval of XML Documents. In International Workshop on the
Web and Databases, Dallas TX, USA, 2000.

Shanmugasundaram J., Tufte K., He G., Zhang C., DeWitt D., Naughton
J. Relational Databases for Querying XML Documents: Limitations and Op-
portunities. In Proc of the 25th VLDB 1999 Conference, p. 302-314, Edinburg,
Scotland.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/xml-storage-relational-

databases/32134

Related Content

An Efficient Server Minimization Algorithm for Internet Distributed Systems
Swati Mishraand Sanjaya Kumar Panda (2017). International Journal of Rough Sets and Data Analysis (pp.

17-30).

www.irma-international.org/article/an-efficient-server-minimization-algorithm-for-internet-distributed-systems/186856

On Inter-Method and Intra-Method Object-Oriented Class Cohesion
Frank Tsui, Orlando Karam, Sheryl Dugginsand Challa Bonja (2009). International Journal of Information

Technologies and Systems Approach (pp. 15-32).

www.irma-international.org/article/inter-method-intra-method-object/2544

Statistical Techniques for Research
Jose Carlos Casas-Rosal, Carmen León-Mantero, Noelia Jiménez-Fanjuland Alexander Maz-Machado

(2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 624-636).

www.irma-international.org/chapter/statistical-techniques-for-research/260218

Decimal Hardware Multiplier
Mário Pereira Vestias (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

4607-4618).

www.irma-international.org/chapter/decimal-hardware-multiplier/184168

Three Parties Engagement of Learning Management System: Students-Lecturer Technology

Evidence From Brunei
Fadzliwati Mohiddinand Heru Susanto (2021). Handbook of Research on Analyzing IT Opportunities for

Inclusive Digital Learning (pp. 130-153).

www.irma-international.org/chapter/three-parties-engagement-of-learning-management-system/278958

http://www.igi-global.com/proceeding-paper/xml-storage-relational-databases/32134
http://www.igi-global.com/proceeding-paper/xml-storage-relational-databases/32134
http://www.irma-international.org/article/an-efficient-server-minimization-algorithm-for-internet-distributed-systems/186856
http://www.irma-international.org/article/inter-method-intra-method-object/2544
http://www.irma-international.org/chapter/statistical-techniques-for-research/260218
http://www.irma-international.org/chapter/decimal-hardware-multiplier/184168
http://www.irma-international.org/chapter/three-parties-engagement-of-learning-management-system/278958

