
Information Technology and Organizations  859

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ABSTRACT

This paper presents first attempts at estimating the effort in open source
software projects. First, the possible parties interested in the results of effort
estimation, and both hindrances and advantages for effort estimation in this
context are explored. Using data concerning an open source project retrieved
from public data, several well-known estimation models from literature are
applied, and their applicability for this type of development is discussed.

1. INTRODUCTION
Open source software development (Feller and Fitzgerald, 2002;

Raymond, 1999) has generated increasing interest in the last years. This soft-
ware is characterized by several rights given by the respective licence, includ-
ing free redistribution, inclusion of the source code, possibility for modifica-
tions and derived works, and some others (Perens, 1999). The guiding prin-
ciple for open source software development is that by sharing source code,
developers cooperate under a model of rigorous peer-review and take advan-
tage of “parallel debugging” that leads to innovation and rapid advancement
in developing and evolving software products.

While the differences between the decentralized open source process and
traditional software engineering practices have been debated (McConnell, 1999;
Vixie, 1999), and also quantitative studies of development projects and com-
munities have been undertaken (Dempsey et al., 2002; Ghosh and Prakash,
2000; Hermann et al., 2000; Koch and Schneider, 2002; Krishnamurthy, 2002;
Mockus et al., 2002), some points remain to be explored. One of the most
important questions remaining is the effort for developing open source soft-
ware, which is not known even to the leaders of the respective project. As
software engineering has dealt with the problem of estimating the effort for a
software project for decades and has produced a multitude of methods to this
end, their use seems a natural answer. Whether these models can indeed be
used for open source software projects needs to be ascertained. If this were the
case, the information delivered would have additional benefits even for the
open source community and companies pursuing related business models.

2. CASE STUDY

For this research, data concerning a large scale open source project were
needed. Therefore we chose to use data available to the public from the ver-
sion control system CVS (Concurrent Versions System; Fogel, 1999) and dis-
cussion lists of the GNOME project. In particular, data concerning the partici-
pants’ contributions to the project, their cooperation and the progression of
the project in size and participants over time could be retrieved from these
sources. For results concerning areas other than effort estimation see Koch and
Schneider (2002).

The data retrieved from the CVS-repository included for every checkin
programmer, file, date, LOC added and deleted, revision number and some
comment. Using the conventions of CVS, a programmer is doing work on the
project by submitting (“checking in”) files, which is recorded with the changes
in the lines-of-code and further information. The definition of this often dis-
puted metric LOC is taken from CVS and therefore includes all types, e.g. also
commentaries (Fogel, 2000). As the difference between the date of the first
and the last checkin of a programmer includes all time elapsed, not necessarily

Effort Estimation in Open Source
Software Development: A Case Study

Stefan Koch
Department of Information Business, Vienna University of Economics and BA, Augasse 2-6, A-1090 Vienna, AUSTRIA

Telephone: ++43 1 31 336 5206, Fax: ++43 1 31 336 739, stefan.koch@wu-wien.ac.at

only time spent working on the project, this measure is not usable for predict-
ing output. Therefore, a programmer is defined as being active in a given pe-
riod of time if he performed at least one checkin during this interval.

In the GNOME project, 301 programmers were identified, who differ
significantly in their effort for this software project, with a majority contribut-
ing only a quite small amount to the total work done, a result also found by
Dempsey et al. (2002) and Mockus et al. (2002). The total size of the GNOME
project in LOC has experienced a steady increase up to the size of 1 800 000
LOC at the end of the observed time period, with 1 230 000 LOC being the
size at the time it became operational (first major release in March 1999).
During this time, the number of active programmers has seen a staggering rise
between November 1997 and the end of 1998 (see Fig. 1). During the year
1999 this number has been roughly constant at around 130 persons. One rea-
son for this development could be taken from Norden (1960) and Putnam
(1978) who argue that only a given amount of persons can be working in a
productive manner at a given time. In the light of this interpretation, the peak
manning of the project has already been reached and will only see a downfall
from thereafter. A correlation of 0.932 was found between total of LOC added
and number of active programmers each month, which confirms the usability
of this number for effort estimation. Another interesting finding is that pro-
ductivity (defined as the mean number of LOC per programmer) is strongly
positive correlated with number of active programmers in each month, thus
violating Brooks’ Law (Brooks, 1995).

3. EFFORT ESTIMATION

3.1. General Discussion
Establishing effort estimation for open source projects has two reasons,

with the first being to uncover how efficient this form of development is. In
the last years, this topic has been the center of much debate, major points
always having been the efficiency of finding and correcting bugs relatively
late in the life cycle (McDonnell, 1999; Vixie, 1999), and the high overhead

TIME

NOV 1999

SEP 1999

JUL 1999

M
AY 1999

M
AR 1999

JAN 1999

NOV 1998

SEP 1998

JUL 1998

M
AY 1998

M
AR 1998

JAN 1998

NOV 1997

SEP 1997

JUL 1997

M
AY 1997

M
AR 1997

JAN 1997

N
um

be
r 

of
 a

ct
iv

e 
pr

og
ra

m
m

er
s

160

140

120

100

80

60

40

20

0

Figure 1. Number of active programmers

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING



860  Information Technology and Organizations

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

costs incurred for coordination and duplicated work. As the effort expended
for developing open source software is unknown, these questions could not be
answered. Therefore establishing retroactive effort estimation, thus arriving at
a quantification for the effort expended for an existing software system, could
help in deciding whether this development model should be pursued, aban-
doned or combined with traditional approaches into hybrid-models.

On the other hand, while the results of an effort estimation in commer-
cial development are used for planning and control by management, there are
also stakeholders in open source projects who could be interested in such re-
sults at early stages or during a project. These include the community itself,
especially, dependent on the organizational form, the owner/maintainer, inner
circle or committee (Fielding, 1999; Raymond, 1999), which need to monitor
progress and plan for release dates, and programmers considering whether to
join or to remain in a project. Further possible interested parties are current or
prospective users, who need the functionality at a given date or with a given
maturity level, especially corporations which are intending to pursue a busi-
ness models based on this software, need it for their operations or plan to
incorporate it in their products or services.

Several problems are associated with estimation for open source projects,
in addition to the problems inherent in effort estimation. The first problem is
the voluntariness of people’s participation, which might also result in a high
turnover of personnel and reduced productivity (Brooks, 1995). On the other
hand, empirical data shows both that productivity is not necessarily declining
(see above) and that the staffing for open source projects follows the postu-
lated model for commercial software development (Norden, 1960; Putnam,
1978) closely (see below and Koch and Schneider, 2002). Vixie (1999) men-
tions the lack of a formal design and requirements definition as a problem, as
necessary information for estimation will be missing. This information de-
pends on the model employed and is thus discussed for each approach.

In addition, several assumptions of effort estimation models are inher-
ently violated in open source development. For example COCOMO (Boehm,
1981) assumes a good management by both software producer and client, de-
velopment following a waterfall-model and permanence of the requirements
during the whole process. As there is no distinction between producer and
client in open source development this seems no problem. The other two as-
sumptions are both indeed violated, as the requirements are neither written
down (Vixie, 1999) nor constant over time, and the software development
follows are more spiral type of approach (Boehm, 1988), having been termed
micro-spirals (Bollinger et al., 1999). COCOMO II (Boehm et al., 2000) on
the other hand does not contain these assumptions but incorporates a more
prototype-oriented type of development. The function point method also does
not contain any assumption concerning the process model as it aims at being
technology-independent and taking the user’s viewpoint (Albrecht and Gaffney,
1983).

One main advantage is that all information concerning an open source
project is available to the public. Therefore the data can be used by any inter-
ested party for estimation, which is not possible in commercial development.

3.2. Norden-Rayleigh
The first approach to estimating the effort for the GNOME project is

based on Norden (1960) and Putnam (1978). A development project is mod-
eled as an unknown but finite number of problems, which are solved by the
manpower in events following a Poisson distribution. The number of people
usefully employed at any given time is assumed to be approximately propor-
tional to the number of problems ready for solution. Therefore, this number
becomes smaller towards the end of a project as the problem space is exhausted.
The learning rate of the team is modeled as a linear function of time which
governs the application of effort. Following, the manpower function at a given
time represents a Rayleigh-type curve governed by a parameter which plays an
important role in the determination of the peak manpower. Using the relation-
ship between time of peak manning and this parameter, the total manpower
required can be determined once peak manning has been reached.

As the manpower distribution for the GNOME project has been retrieved
from the data (see Fig. 1 above) and seems to follow a Rayleigh-type curve,
this information can be used for estimating the effort. The peak manning of
active programmers seems to have been reached between November 1998 and
September 1999. Therefore the time elapsed between the beginning of the
project (using January 1997) and the peak manning is set to 2.25 years, taking

the middle of this range. The peak manning is set to 131.8 persons, again
using the mean, but needs to be converted to full-time employees, as assumed
in the model. For this conversion, some value for the time actually invested in
the project is necessary. The study of Hermann et al. (2000), which shows at
several points similar characteristics of the programmers questioned to the
data retrieved from the GNOME project is used which gives 13.9 hours per
week spent per programmer. This results in a peak manning of 45.8 persons
(see Fig. 2 for the resulting manpower function for the GNOME project de-
picted as variable FULL_PRO). Using these values in the model, a total effort
of 169.9 person-years is obtained. The projected manpower function derived
is also shown in Fig. 2 (depicted as VAR1). As the manpower distribution
retrieved from the data shows a small level of activity until October 1997, a
second approach was taken using this point as start of the project. The time of
peak manning then becomes 1.42 years and the total effort is estimated as
107.2 person-years. The resulting manpower function is again shown in Fig. 2
(as VAR2).

As Putnam (1978) has shown, the time of peak manning is close to the
time the software becomes operational, while effort thereafter is expended for
modification and maintenance. The first major release of GNOME has been in
March 1999, which coincides with peak manning empirically determined. The
effort expended until this date is estimated as 66.8 person-years by the first
approach, as 42.1 by the second. The results of the effort estimation for the
total project presented above therefore include modification and maintenance.
But as the requirements are not fixed in open source projects over time, but are
expanded according to the requests of programmers and users, the estimation
presented might not give a complete forecast. As a result, models for effort
estimation would have to be extended to incorporate this generation of new
functionality, maybe using a stochastic process. Besides this, the fact that the
Rayleigh-curve proposed for commercial projects decades before closely fits
the curve for a contemporary open source project (at least until time of opera-
tion) is astonishing and hints at the fact that a self-regulating community fol-
lows the theory for efficient manpower application as well (or maybe even
better) than commercial management. In addition this model builds the foun-
dation of several other estimation methods including COCOMO, which there-
fore might also be applicable in this context.

3.3. COCOMO
The original COCOMO (Boehm, 1981) is one of most widely used mod-

els but two assumptions seem problematic. These are a development following
a waterfall-model and the permanence of the requirements during the process.
Therefore the applicability in the context of open source projects seems ques-
tionable. To confirm this, the work of Londeix (1987) is used, who details how
an estimation in COCOMO can be transferred to the model by Putnam (1978),
i.e. how the corresponding Rayleigh-curve can be determined. In this case the
other direction is employed to find the parameters in COCOMO correspond-

Figure 2.  Manpower function from data (FULL_PRO) and
projected (VAR1 and VAR2).



Information Technology and Organizations  861

Copyright © 2003, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

ing to the curve. As intermediate COCOMO has both the development mode
and the values of cost drivers as parameters, there is no single solution. But
nevertheless, even if organic mode, intended for small, in-house teams, is as-
sumed, influence of the cost drivers would have to be more favorable than
possible. Therefore the development of GNOME can not be modeled using
original COCOMO, which states this development is more efficient than pos-
sible.

Therefore the successor COCOMO II (Boehm et al., 2000) seems to be a
better choice, as it allows for both increasing and decreasing economies of
scale, a prototype-oriented software process and flexibility in the requirements.
When possible parameters are explored, the result is that once again this project
is seen as very efficient as the cost drivers and scale factors replacing the
modes of development in COCOMO II have to be rated rather favorably to
obtain the estimated effort from the Rayleigh-curve, but this time the resulting
combinations are within the range specified by the authors. If realistic values
for the scale factors are used, the necessary value for the effect of the cost
drivers is still within possible range.

For an additional effort estimation, the size of the GNOME project at
time of operation is used with nominal values for all parameters, resulting in
612.5 person-years, and with realistic parameters resulting in 296.8 person-
years, both of which are considerably higher than the results of the Rayleigh-
curve. Nevertheless, while original COCOMO must be rejected in the context
of open source development, COCOMO II provides for a modern type of soft-
ware development and could be applicable, although it also deems this kind of
development very efficient.

3.4. Function Point
While it is difficult, especially for an outsider, to correctly quantify the

function points (Albrecht and Gaffney, 1983) for an open source project at the
beginning, and also the requirements even from the user perspective can change
during the progress, a quantification can be arrived at using the opposite way
as in converting a function point count to LOC (Albrecht and Gaffney, 1983;
Boehm et al., 2000). For this conversion, the mean number of LOC necessary
to implement a single function point in a given programming language is pro-
vided. In GNOME, the most employed language is C, followed by Perl and
C++. Therefore the overall conversion factor is estimated by using the factors
from Boehm et al. (2000) for these languages with a weight of 0.7, 0.2 and 0.1,
respectively, resulting in 100.5 LOC per function point. The size of GNOME
at the time of operation thus corresponds to 12 200 function points.

In order to arrive at an effort estimation based on the function point
count, either this measure is converted to LOC and another model like
COCOMO is employed, or a relationship between function points and effort
from historic projects is used. As the first approach has already been employed
above, the second is taken. Using the equation provided by Albrecht and Gaffney
(1983) results in an effort of 353.8 person-years. Different equations are pro-
vided by Kemerer (1987) resulting in 336.3 person-years, and by Matson et al.
(1994) with a linear model resulting in 101.9 and a logarithmic model in 82.3
person-years. It seems interesting that the newer models estimate the effort as
significantly less. This might be caused by the larger database containing larger
projects of Matson et al. (1994) and the date of their study which allows for
newer practices to be included in their results and thus resulting in stronger
similarity to open source development. Nevertheless, the results which are in
all cases higher than those of the Rayleigh-curve hint at a rather efficient mode
of software development.

The main advantages for using function points are also of interest to
their application in open source development. They are technology-indepen-
dent, the user-viewpoint is considered and there is no assumption concerning
the underlying software process. Therefore this metric can be used for com-
parisons of productivity and efficiency. Of course, additional data for open
source projects need to be available.

4. CONCLUSION

In this paper we have discussed why effort estimation for open source
development can be of interest. On the one hand, estimation of effort for com-
pleted developments is necessary for assessing their efficiency, and estimation
at earlier stages can give important information to several stakeholders. The
main problems in estimating this effort have been detailed, with some of them
having been mitigated. Use of several approaches has been demonstrated us-

ing empirical data gathered for the GNOME project. Results indicate that open
source development at least until time of operation seems to follow the model
proposed for commercial projects very closely. In addition, this model can be
used for estimating the effort for an open source project, although not right at
the beginning, but including maintenance and modifications. The original
COCOMO was dismissed both on theoretical and empirical grounds as being
incompatible with open source development, while COCOMO II seemed ap-
plicable, as were function points, especially for providing a measure for tech-
nology-independent productivity comparisons. Both the results for COCOMO
II and retroactive function point estimation showed that the estimations ex-
ceeded those of the Rayleigh-curve, hinting at a very efficient way of develop-
ment from the viewpoints of these models.

REFERENCES

Albrecht, A.J. and Gaffney, J.E. (1983) Software Function, Source Lines
of Code, and Development Effort Prediction: A Software Science Validation.
IEEE Transactions on Software Engineering, 9, 6, 639-648.

Boehm, B.W. (1981) Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, New Jersey.

Boehm, B.W. (1988) A Spiral Model for Software Development and
Enhancement. IEEE Computer, 21, 5, 61-72.

Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz,
E., Madachy, R., Reifer, D.J. and Steece, B. (2000) Software Cost Estimation
with COCOMO II. Prentice Hall, Upper Saddle River, New Jersey.

Bollinger, T., Nelson, R., Self, K.M. and Turnbull, S.J. (1999) Open-
source methods: Peering through the clutter. IEEE Software, 16, 4, 8-11.

Brooks jr., F.P. (1995) The Mythical Man-Month: Essays on Software
Engineering. Anniversary ed., Addison-Wesley, Reading, Massachusetts.

Dempsey, B.J., Weiss, D., Jones, P. and Greenberg, J. (2002) Who is an
open source software developer? CACM, 45, 2, 67-72.

Feller, J. and Fitzgerald, B. (2002) Understanding Open Source Soft-
ware Development. Addison-Wesley, London.

Fielding, R.T. (1999) Shared Leadership in the Apache Project. CACM,
42, 4, 42-43.

Fogel, K. (1999) Open Source Development with CVS. CoriolisOpen
Press, Scottsdale, Arizona.

Ghosh, R. and Prakash, V.V. (2000) The Orbiten Free Software Survey.
First Monday, 5, 7.

Hermann, S., Hertel, G. and Niedner, S. (2000) Linux Study Homepage.
avaible online: http://www.psychologie.uni-kiel.de/linux-study/.

Kemerer, C.F. (1987) An Empirical Validation of Software Cost Estima-
tion Models. CACM, 30, 5, 416-429.

Koch, S. and Schneider, G. (2002) Effort, Cooperation and Coordination
in an Open Source Software Project: GNOME. Information Systems Journal,
12, 1, 27-42.

Krishnamurthy, S. (2002) Cave or community? an empirical investiga-
tion of 100 mature Open Source projects. First Monday, 7, 6.

Londeix, B. (1987) Cost Estimation for Software Development. Addison-
Wesley, Wokingham, UK.

Matson, J.E., Barrett, B.E. and Mellichamp, J.M. (1994) Software De-
velopment Cost Estimation Using Function Points. IEEE Transactions on Soft-
ware Engineering, 20, 4, 275-287.

McConnell, S. (1999) Open-source methodology: Ready for prime time?
IEEE Software, 16, 4, 6-8.

Mockus, A., Fielding, R. and Herbsleb, J. (2002) Two case studies of
Open Source software development: Apache and Mozilla. ACM Transactions
on Software Engineering and Methodology, 11, 3, 309-346.

Norden, P.V. (1960) On the anatomy of development projects. IRE Trans-
actions on Engineering Management, 7, 1, 34-42.

Perens, B. (1999) The Open Source Definition. In Open Sources: Voices
from the Open Source Revolution, DiBona, C. et al. (eds.), O’Reilly, Cam-
bridge.

Putnam, L.H. (1978) A general empirical solution to the macro software
sizing and estimating problem. IEEE Transactions on Software Engineering,
4, 4, 345-361.

Raymond, E.S. (1999) The Cathedral and the Bazaar. O’Reilly, Cam-
bridge.

Vixie, P. (1999) Software Engineering. In Open Sources: Voices from the
Open Source Revolution, DiBona, C. et al. (eds.), O’Reilly, Cambridge.



 

 

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/effort-estimation-open-source-

software/32164

Related Content

Trend-Aware Data Imputation Based on Generative Adversarial Network for Time Series
Han Li, Zhenxiong Liu, Jixiang Niu, Zhongguo Yangand Sikandar Ali (2023). International Journal of

Information Technologies and Systems Approach (pp. 1-17).

www.irma-international.org/article/trend-aware-data-imputation-based-on-generative-adversarial-network-for-time-

series/325212

An Efficient Self-Refinement and Reconstruction Network for Image Denoising
Jinqiang Xueand Qin Wu (2023). International Journal of Information Technologies and Systems Approach

(pp. 1-17).

www.irma-international.org/article/an-efficient-self-refinement-and-reconstruction-network-for-image-denoising/321456

Development of Image Engineering in the Last 20 Years
Yu-Jin Zhang (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 1319-

1330).

www.irma-international.org/chapter/development-of-image-engineering-in-the-last-20-years/183845

Quantum Computing and Quantum Communication
Göran Pulkkisand Kaj J. Grahn (2018). Encyclopedia of Information Science and Technology, Fourth

Edition (pp. 7715-7730).

www.irma-international.org/chapter/quantum-computing-and-quantum-communication/184467

GPU Based Modified HYPR Technique: A Promising Method for Low Dose Imaging
Shrinivas D. Desaiand Linganagouda Kulkarni (2015). International Journal of Rough Sets and Data

Analysis (pp. 42-57).

www.irma-international.org/article/gpu-based-modified-hypr-technique/133532

http://www.igi-global.com/proceeding-paper/effort-estimation-open-source-software/32164
http://www.igi-global.com/proceeding-paper/effort-estimation-open-source-software/32164
http://www.irma-international.org/article/trend-aware-data-imputation-based-on-generative-adversarial-network-for-time-series/325212
http://www.irma-international.org/article/trend-aware-data-imputation-based-on-generative-adversarial-network-for-time-series/325212
http://www.irma-international.org/article/an-efficient-self-refinement-and-reconstruction-network-for-image-denoising/321456
http://www.irma-international.org/chapter/development-of-image-engineering-in-the-last-20-years/183845
http://www.irma-international.org/chapter/quantum-computing-and-quantum-communication/184467
http://www.irma-international.org/article/gpu-based-modified-hypr-technique/133532

