
20 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Web-Based Tutoring for Java™: Edvidence of
Rule-Governed Learning

Henry H. Emurian
 Information Systems Department, ITE 420, UMBC, 1000 Hilltop Circle, Baltimore, Maryland 21250 USA, emurian@umbc.edu

INTRODUCTION
This paper presents a continuation of our work to develop and

refine an automated instructional program to assist information systems
students in beginning their study of Java™ We have previously reported
our progress in the development of this tutoring system and its
application as the first technical exercise for students in a programming
course (Emurian & Durham, 2001, 2002; Emurian, Hu, Wang, &
Durham, 2000). The purpose of the system is to provide each and every
student with a documented and identical level of elementary knowledge
and skill. The tutoring system has been demonstrably effective in
promoting skill and confidence in students by giving them a successful
learning experience that motivates their further study of Java using
textbooks, lectures, laboratory demonstrations, and the like.

One of the challenges in developing an automated instructional
system, however, is to craft the learning experience so that students
acquire the capability to solve problems not explicitly taught or
encountered in the system itself. When students are able to apply
knowledge successfully to new situations, they are said to be demonstrat-
ing meaningful learning (Mayer, 2002) as opposed to reciting facts
acquired by rote memorization. These two outcomes reflect the oppo-
site endpoints on a generality-specificity dimension of skill (e.g.,
Novick, 1990). Generalizable rules, which may be the essence of
meaningful learning, can be acquired by direct instruction and rehearsal
or by induction, when many different situations are encountered that
exhibit the general rule (e.g., Kudadjie-Gyamfi & Rachlin, 2002). The
former tactic is consistent with our instructional system design, which
is competency based and which is intended to insure that all students
reach the same level of knowledge and skill. The purpose of the present
study, then, is to show that students who complete the tutor do acquire
general rules that are applicable to problems not explicitly addressed in
the tutor itself.

Interpretative surveys of the scientific literature in far transfer
effects of learning continue to show the advantages of explicitly
teaching generalizable principles and rules, rather than expecting such
knowledge to develop implicitly or abstractly as a by-product of
memorizing facts (Barnett & Ceci, 2002). For example, it is likely more
efficient to teach students the rule to begin the name of a Java class with
a capital letter rather than have students acquire such a rule inductively
by memorizing many different programs and trying to discover com-
monalities. In fact, a combination of teaching rules with examples might
be optimal for meaningful learning, and our approach to the design of
the tutoring system is based on the latter assumption.

METHOD
Subjects

The subjects were eight female and four male graduate students in
information systems enrolled in a course (Summer 2003) entitled
Graphical User Interface Systems Using Java. The median age was 27
years (range = 21 to 49 years). On a ten-point ordinal scale, where 1 =

novice and 10 = expert, the median prior experience with Java was 1
(range = 1 to 4). The median number of programming courses taken
previously was 3 (range = 1 to 5).

Materials
The tutoring system teaches a simple Java Applet, which is a

program that is downloaded from a server and run in a browser. It is
intended for students who are not proficient computer programmers and
who may lack confidence in their ability to write a program that works.
The Applet program is organized into 32 items and ten rows. The student
is taught the meaning of each item and the meaning of each row. The
student must pass a multiple-choice test on these program components,
and studying continues until each test is passed correctly.

The seven stages of the tutoring system, from basic instructions and
code examples to the construction of the code from memory, are
presented in Emurian (in press) and Emurian, Wang, and Durham (2003).
In brief, the tutoring system is an interactive system that combines
teaching, assessment of competency, and rehearsal within a single
framework. The design of the system is based upon programmed
instruction, which takes a learner through a series of experiences from
simple mastery of the form of symbols to writing and understanding a
complete program. This design reflects the application of behavior
analysis principles to designing teaching strategies for technology
education (Greer, 2002, p. 185).

Information is delivered to the student in a frame. A frame consists
of (1) the presentation of the symbol to be learned, within the proper
context; (2) a textual display of information about the symbol’s
meaning and use; (3) a multiple-choice test on the meaning of the
symbol; and (4) an input field for typing the symbol by recall. If the
student makes an error during steps 3 or 4, the tutor resets to step 1.
These elements of a frame constitute a learn unit (Greer & McDonough,
1999) .

Below is presented the ninth of the 32 item frames in the tutoring
system. It teaches the meaning of the MyProgram item, which is a
subclass of the Applet class in the program.

MyProgram frame:
The term MyProgram is the name of the class that you are writing.

Your Java program is a class. The name is an arbitrary alphanumeric
string. MyProgram is not the name of an instance of this class. It is the
name of the class. It is important that you begin to distinguish the name
of a class from the names of particular instances of that class that are
created later. This distinction will become clearer as you progress
through the tutor. Notice that the name of the class begins with a capital
letter. That is a convention in Java. The name of a class begins with a
capital letter. That is an important rule to know.

The text file that contains the Java program for the MyProgram
class must have exactly the same name, together with “dot java” at the

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,
Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

Innovations Through Information Technology 21

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

end. The file for your program would be named MyProgram.java. The
name of the text file must exactly match the name of the class. That
is an important rule to know.

The Java text file, which is the source program, will be compiled
with: javac MyProgram.java. The result of compiling the program is a
class file named MyProgram.class, which will be located in your
directory.

Below are the five rule-based multiple-choice questions. The
correct solution to each question requires the application of a general
principle that was presented in the frames of information. None of the
items below appeared in the frames or in the multiple-choice tests that
were embedded in the frames. This eliminated rote memorization as an
explanation for correct solutions, should they be observed at all. For
each of the five rule-based questions, the student rated his or her
confidence that the correct answer was selected. The ordinal scale
anchors were 1 and 10, where 1 = no confidence and 10 = total
confidence. A ten-point rating scale was adopted to increase the
sensitivity of the scale to detect changes in ratings over three successive
assessment occasions.

Rule-Based Questions:

1. Which of the following lines most likely would be used to create
a shorthand notation for the Frame class, which is built in to Java?
a. import java.awt.frame;
b. import java.awt.Frame.class;
c. import java.awt.Frame;
d. import java.awt.frame.class;

2. Which of the following lines most likely would be used to
construct an instance of a Button class?
a. MyButton = new Button(“Hello”);
b. myButton = new Button(“Hello”);
c. myButton = button.class(“Hello”);
d. MyButton = Button(“Hello”);

3. Which of the following lines most likely would be used to add a
Checkbox object to a container?
a. Add(myCheckBox);
b. Add(Checkbox);
c. add(Checkbox);
d. add(myCheckBox);

4. Which of the following lines most likely overrides a method that
is contained in the Applet class?
a. public void stop(){ lines of Java code here }
b. public void Stop{} { lines of Java code here }
c. Public void Stop() (lines of Java code here)
d. Public void stop() { lines of Java code here }

5. Which of the following sequences is correct?
a. declare a TextField object, construct a TextField
object, add a TextField object to a container
b. construct a TextField object, declare a TextField object, add a
TextField object to a container
c. declare a TextField object, add a TextField object to a
container, construct a TextField object
d. add a TextField object to a container, declare a TextField
object, construct a TextField object

Procedure
At the first class meeting, students used the web-based tutor1. All

students completed all stages in the tutor within the 3-hr class period.
This means that all students left the first class period being able to write
the ten lines of Java code from memory and with no error. The students
had also studied the frames until they could accurately answer all
multiple-choice test questions accurately.

Prior to using the tutor, students completed a questionnaire that
obtained demographic information. For each of the 21 unique items of
code in the program, the student rated his or her confidence in being able
to use the symbol, where 1 = no confidence and 10 = complete
confidence. This was the measure of software self-efficacy, based on the
original work by Bandura (1977) and the later adoption of this approach

by researchers in information technology education (e.g., Potosky,
2002; Torkzadeh & Van Dyke, 2002). Students also completed the
above five rule-based questions, to include the rating of confidence in
the accuracy of the answer selected.

After the students completed the tutor, they repeated the software
self-efficacy and rule-based questions. The students then rated the
overall quality of the tutor, the effectiveness of the tutor in learning
Java, and the usability of the tutor interfaces. Each of these latter scales
was a 10-point ordinal scale, where 1 = poor quality and 10 = best quality.

During the second class, which was two days later, the author
repeated the teaching of the Applet, but this time a lecture and discussion
format was used. The author wrote the program on the board and
discussed each item and row. The students simultaneously entered the
program into a Unix™text editor. At the completion of the lecture, the
students were taught how to compile the program into byte code.
Additionally, the Unix directory tree and file protections were taught.
The HTML file was then taught, and the students ran the Applet on the
world wide web. Finally, the students repeated the questionnaire assessing
software self-efficacy and rule-based learning.

RESULTS AND DISCUSSION

Figure 1 presents boxplots of total correct rule-based answers by all
students across the three assessment occasions: pre-tutor, post-tutor,
and post-applet. The figure shows graphically that the median value
increased over the three occasions, and a Kruskal-Wallis test was
significant (chi-square = 16.93, df = 2, p < .001). The figure also shows
that the most pronounced increase occurred between the pre-tutor and
post-tutor occasions, in comparison to the post-tutor and post-applet
occasions. A comparison of the means of the differences, for all 12
subjects, between pre-tutor and post-tutor totals (Mean = 2.3) with post-
tutor and post-applet totals (Mean = 0.3) was significant, t(17.5) for
unequal variances = 4.24, p < .001.

Figure 2 presents boxplots of median confidence ratings for Right
(R) and Wrong (W) answers for pre-tutor (Pre-T), post-tutor (Post-T),
and post-applet (Post-A) assessment occasions. The total number of
medians within each occasion exceeds 12 because students often made
both correct and incorrect choices for the answers. Values in the
boxplots are based upon the collection of median ratings for each student
for R and W answers across the three occasions. Comparisons between
R and W medians within pre-tutor and post-tutor occasions were not
significant. Accordingly, data were combined for R and W within each
occasion, and a Kruskal-Wallis comparison between pre-tutor and post-
tutor ratings was significant (chi-square = 18.56, p < .001). Too few
medians were present in the W category for the post-applet assessment
for a meaningful comparison using those data.

Figure 1

22 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

These ratings show the students’ insensitivity in monitoring their
own learning. Since the null hypothesis of no difference in confidence
ratings between R and W answers could not be rejected, the learners did
not know, perhaps, that their learning was incomplete. Since self-
regulation of learning is an important skill (Veenman, Prins, & Elshour,
2002; Young, 1996; Zimmerman, 1994), how to achieve this outcome
within the context of the present tutoring system warrants consider-
ation as this teaching technology continues to mature.

Figure 3 presents boxplots of self-reports of software self-efficacy
by all students across the three assessment occasions: pre-tutor
(Cronbach’s alpha = .97), post-tutor (Cronbach’s alpha = .98), and post-
applet (Cronbach’s alpha = .98). The figure shows graphically that the
median value increased over the three occasions, and a Kruskal-Wallis
test was significant (chi-square = 18.45, df = 2, p < .001). The figure also
shows that the most pronounced increase occurred between the pre-tutor
and post-tutor occasions, in comparison to the post-tutor and post-
applet occasions. A comparison of the means of the differences, for all
12 subjects, between pre-tutor and post-tutor ratings (Mean = 5.2) with
post-tutor and post-applet ratings (Mean = 1.0) was significant, t(17.3)
for unequal variances = 4.80, p < .001.

The post-tutor ratings of the tutoring system were as follows:
median overall rating = 10 (range = 5 - 10); median effectiveness in
teaching Java = 9 (range = 5 - 10); and median interface usability = 9.5
(range = 6 - 10). These outcomes are similar to the ratings observed in
our previous studies, and they show that the tutoring system was
generally well received by this population of students.

The importance of these self-ratings is to be understood in terms
of the impact of the learning experience on the students’ motivation
to continue their studies. Given the frequently expressed concern that
women and minority groups avoid science, mathematics, and engineer-
ing disciplines (Emurian, in press), it is encouraging to observe that at
least some instructional tactics, such as programmed instruction, may
be helpful to provide both skill and confidence in students who are
initially interested in a discipline, but whose lack of preparation may
result in demoralization to the point of avoiding or withdrawing from
continued study. The essence of effective automated tutoring, then, is
to provide a set of experiences that gives all students the skill and
confidence to manage their own learning effectively, without regard to
content and without the continued support of a tutoring system.
Fostering such constructive metacognitive processes and supporting
individual differences in ability constitute the foundation of effective
automated tutoring (Cuevas, Fiore, Bowers, & Salas, in press).

As discussed elsewhere (Emurian & Durham, 2003), much of the
literature in teaching computer programming addresses this matter as
though the skill of computer programming requires a unique teaching
technology. It is also directed toward groups of students rather than to
the individual learner. Our approach is different. We assume that
learning to write programs falls within the scope of training in general
(Salas & Cannon-Bowers, 2001) and rule-governed learning in particular
(Hayes, 1989). We also assume that a teaching technology can only be
rationally developed and applied when it is directed toward the achieve-
ment of a criterion of mastery by each and every student. R e s e a r c h
and interventions that are based on null hypothesis refutations of
average performance between groups by definition accept at least some
deficient student performance as an outcome. It is encouraging, then,
to see the emergence of more achievement oriented research, based on
pre-training and post-training comparisons in one group of learners, in
contrast to between group comparisons. As indicated by Sackett and
Mullen (1993), it may be more important to an organization to know
that an instructional intervention will be successful for all learners than
it is to know that mean performance between groups show differences.

It is an unfortunate irony that educational research is sometimes
perceived as less valuable than other areas of research, at least within
the social sciences (Sternberg & Lyon, 2002). The irony comes from the
obvious importance of education and of knowing and applying the
conditions that will help students to learn best, throughout the life span.
In that regard, research in how best to teach computer programming is
typically characterized by comparing average performance among
several groups of learners, where each group is exposed to a somewhat
different instructional condition. The literature is filled with scores of
such studies. This strategy is inherently flawed because it tacitly accepts
the outcome that not all students will achieve mastery even in the group
with the best average performance.

The motivation for the above strategy, of course, is to determine
the best instructional tactic, but that strategy is useful only when the
time for instructional delivery or for studying is constrained for all
students. Such constraints have nothing to do with the process of
learning. To adopt the best teaching strategy should mean to respect the
right of all students to be given the opportunity to achieve mastery,
where opportunity is redefined to mean sustained exposure to the proper
conditions of learning, to include being taught learning strategies (e.g.,
Namlu, 2003), until achievement has been attained at the level of the
individual student. No two students in a classroom will show identical
readiness for learning new material. Each student will begin a learning
experience with a different history or baseline repertoire. All students
deserve to experience a process of learning, however different that
process may be manifested across students, that takes each of them to
the identical level of achievement.

Figure 2

Figure 3

Innovations Through Information Technology 23

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

REFERENCES
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of

behavioral change.
Psychological Review, 84, 191-215.
Barnett, S.M., & Ceci, S.J. (2002). When and where do we apply

what we learn? A
taxonomy for far transfer. Psychological Bulletin, 128, 612-637.
Cuevas, H.M., Fiore, S.M., Bowers, C.A., & Salas, E. (in press).

Fostering constructive
cognitive and metacognitive activity in computer-based complex

task training environments. Computers in Human Behavior.
Emurian, H.H., & Durham, A.G. (2001). A personalized system of

instruction for
teaching Java. In M. Khosrowpour (Ed.), Managing Information

Technology in a Global Economy (pp. 155-160). Hershey: Idea Group
Publishing.

Emurian, H.H., & Durham, A.G. (2002). Enhanced learning on a
programmed instruction

tutoring system for JAVA. In M. Khosrowpour (Ed.), Issues and
Trends of IT Management in Contemporary Organizations (pp. 205-
208). Hershey: Idea Group Publishing.

Emurian, H.H., & Durham, A.G. (2003). Computer-based tutoring
systems: a behavioral

approach. In J.A. Jacko & A. Sears (Eds.), Handbook of Human-
Computer Interaction (pp. 677-697). Mahwah, NJ: Lawrence Erlbaum
& Associates.

Emurian, H.H., Hu, X., Wang, J., & Durham, A.G. (2000). Learning
Java: a programmed

instruction approach using applets. Computers in Human
Behavior, 16, 395-422.

Emurian, H.H., Wang, J., & Durham, A.G. (2003). Analysis of
learner performance on a

tutoring system for Java. In T. McGill (Ed.), Current Issues in IT
Education (pp. 46-76). Hershey, PA: IRM Press.

Greer, R.D., & McDonough, S.H. (1999). Is the learn unit a
fundamental measure of

pedagogy? The Behavior Analyst, 22, 5-16.
Greer, R.D. (2002). Designing Teaching Strategies: An Applied

Behavior Analysis
Systems Approach. NY: Academic Press.
Hayes, S.C. (1989). Rule-Governed Behavior: Cognition, Contin-

gencies, and
Instructional Control. New York: Plenum Press.
Kudadjie-Gyamfi, E., & Rachlin, H. (2002). Rule-governed versus

contingency-governed
behavior in a self-control task: effects of changes in contingencies.

Behavioral Processes, 57(1), 29-35.
Mayer, R.E. (2002). The Promise of Educational Psychology.

Volume II. Teaching for
Meaningful Learning. Upper Saddle River, NJ: Pearson Education,

Inc.
Namlu, A.G. (2003). The effect of learning strategy on computer

anxiety. Computers in
Human Behavior, 19, 565-578.
Novick, L.R. (1990). Representational transfer in problem solv-

ing. Psychological
Science, 1, 128-132.

Potosky, D. (2002). A field study of computer efficacy beliefs as
an outcome of training:

the role of computer playfulness, computer knowledge, and perfor-
mance during training. Computers in Human Behavior, 18, 214-255.

Sackett, P.R., & Mullen, E.J. (1993). Beyond formal experimental
design: towards an

expanded view of the training evaluation process. Personnel
Psychology, 46, 613-627.

Salas, E., & Cannon-Bowers, J.A. (2001). The science of training:
a decade of progress.

Annual Review of Psychology, 52, 471-499.

Sternberg, R.J., & Lyon, G.R. (2002). Making a difference to
education: will psychology

pass up the chance? Monitor on Psychology, 33, retrieved on 9/28/
2003. URL: http://www.apa.org/monitor/julaug02/difference.html

Torkzadeh, G., & Van Dyke, T.P. (2002). Effects of training on
Internet self-efficacy and

computer user attitudes. Computers in Human Behavior, 18, 479-
494.

Veenman, M.V.J., Prins, F.J., & Elshout, J.J. (2002). Initial
inductive learning in a

complex computer simulated environment: the role of
metacognitive skills and intellectual ability. Computers in Human
Behavior, 18, 327-241.

Young, J.D. (1996). The effect of self-regulated learning strategies
on performance in

learner controlled computer-based instruction. Educational Tech-
nology Research and Development, 44, 17-27.

Zimmerman, B.J. (1994). Dimensions of academic self-regulation:
a conceptual

framework for education. In D.H. Schunk and B.J. Zimmerman
(Eds.), Self-Regulation of Learning and Performance (pp. 3-21).
Hillsdale, NJ: Erlbaum.

ENDNOTES
1 h t t p : / / n a s a 1 . i f s m . u m b c . e d u / l e a r n J a v a / t u t o r L i n k s /

TutorLinks.html.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/web-based-tutoring-java/32288

Related Content

A Utility Theory of Privacy and Information Sharing
Julia Puaschunder (2021). Encyclopedia of Information Science and Technology, Fifth Edition (pp. 428-

448).

www.irma-international.org/chapter/a-utility-theory-of-privacy-and-information-sharing/260204

“Whatever Works”: Making Sense of Information Quality on Information System Artifacts
Federico Cabitzaand Carla Simone (2012). Phenomenology, Organizational Politics, and IT Design: The

Social Study of Information Systems (pp. 79-110).

www.irma-international.org/chapter/whatever-works-making-sense-information/64679

Cloud Computing Environments
Ashley Matteson (2015). Encyclopedia of Information Science and Technology, Third Edition (pp. 1048-

1058).

www.irma-international.org/chapter/cloud-computing-environments/112500

A Hybrid Approach to Diagnosis of Hepatic Tumors in Computed Tomography Images
Ahmed M. Anter, Mohamed Abu El Souod, Ahmad Taher Azarand Aboul Ella Hassanien (2014).

International Journal of Rough Sets and Data Analysis (pp. 31-48).

www.irma-international.org/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-

images/116045

A Semiosis Model of the Natures and Relationships among Categories of Information in IS
Tuan M. Nguyenand Huy V. Vo (2013). International Journal of Information Technologies and Systems

Approach (pp. 35-52).

www.irma-international.org/article/a-semiosis-model-of-the-natures-and-relationships-among-categories-of-information-

in-is/78906

http://www.igi-global.com/proceeding-paper/web-based-tutoring-java/32288
http://www.irma-international.org/chapter/a-utility-theory-of-privacy-and-information-sharing/260204
http://www.irma-international.org/chapter/whatever-works-making-sense-information/64679
http://www.irma-international.org/chapter/cloud-computing-environments/112500
http://www.irma-international.org/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-images/116045
http://www.irma-international.org/article/a-hybrid-approach-to-diagnosis-of-hepatic-tumors-in-computed-tomography-images/116045
http://www.irma-international.org/article/a-semiosis-model-of-the-natures-and-relationships-among-categories-of-information-in-is/78906
http://www.irma-international.org/article/a-semiosis-model-of-the-natures-and-relationships-among-categories-of-information-in-is/78906

