
78  2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

l

Formal Support to
Incremental Development1

Jing Liu
International Insititute for Software Technology, United Nations University, Macau, lj@iist.unu.edu

Zhiming Liu
International Insititute for Software Technology, United Nations University, Macau, lzm@iist.unu.edu

Department of Computer Science, University of Leicester, UK

Xiaoshan Li
Faculty of Science and Technology, University of Macau, Macau, xsl@umac.mo

Jifeng He
International Insititute for Software Technology, United Nations University, Macau, jifeng@iist.unu.edu

ABSTRACT
This paper presents an approach that integrates a formal method with
Rational Unified Process (RUP). The intentions are: firstly, unifying
different views of UML models that are used in RUP; secondly, supporting
effective use of formal method for system specification and reasoning
with the iterative and incremental approach in RUP. Our overall aim
is to enhance the modeling ability of UML and RUP in preciseness and
conciseness. The formal specification notation is based on Hoare and
He’s Unifying Theories of Programming (UTP).

INTRODUCTION
RUP [6, 7] has recently emerged as a popular software development

process. It promotes several best practices, but one stands above the
others is the idea of iterative development. In the iterative approach of
RUP, a project development is organized as a series of short, fixed-
length mini-projects called iterations; the outcome of each iteration is
a tested, integrated, and executable system. Each iteration includes its
own requirement analysis, design, implementation, and testing and/or
verification activities.

The modeling notation used in RUP is UML [1, 11], that is a de-
facto standard modeling language for the development of software in
broad application ranges. UML not only supports the early development
stages of requirement analysis and specification, but also supports design
and implementation [6, 2]. However, like any other semiformal ap-
proaches, UML lacks the support of formal semantics for applications
with high dependability requirements, and does not meet the IEEE
standard for Software Requirements Specification which emphasizes
that a good requirement specification should be correct, unambiguous,
verifiable, and traceable [13].

In this paper, we propose a method that uses the formal OO
notation defined in [5] to describe the models constructed in iterative
software development process.

The formal semantics is based on the design calculus proposed in
UTP [4]. The character of OO programming is that it includes classes,
inheritance, reference types, visibility and dynamic binding. Its refine-
ment calculus [5] supports incremental programming. Because of this,
the specification of the models constructed in one iteration can be easily
extended or changed in the following iteration.

We use a library system as an example to illustrate the treatment
of models created in different cycles of the RUP and how the formal
specification and reasoning are effectively used.

A FORMAL NOTATION
Both class declarations and commands follow the notion of designs

in Hoare and He’s Unifying Theories of Programming. All the program-
ming constructs of our language are defined in exactly the same way as
their counterparts in the imperative programming languages, in order
to make it more accessible to users who are familiar with imperative
program design. For the full semantic definition of this notation, refer
to the paper [9].

Syntax
In our notation, an object-orient program is of the form cdecls ·

P, where cdecls is a sequence of variable or class declarations, called the
declaration session, and P is a command. P can be understood as the main
method of a Java program: cdecls := cdecl | cdecls; cdecl where vdecl
is a variable declaration, cdecl is a class declaration of the following
form:
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where

• N and M are names of classes, and M is called the direct super class
of N.

• The section private declares the private attributes of the class,
their types and default initial values. similar, the sections pro
tected and public for the protected and public attributes.

•  The method section declares the methods, their value param
eters (val x) and result parameters (res y) and their command
bodies (c

i
).

We will use Java convention to write a class specification, and
assume an attribute protected when it is not tagged with private, protect
or public.
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Commands
Our language supports typical object oriented programming con-

structs:

c ::= D  a design of the form p H R
| skip          termination
| chaos       abort
| var T x    declaration
| end x       undeclaration
| c ; c          sequence
| c� b� c   conditional
| b * c        iteration
| read(x)    read in value
| le := e      assignment

where p is a predicate over variables, and R a predicate over state
variables and their primed versions, a design p � R is defined to be p �
R meaning that if the command start to execute in a state where p holds
it will terminate in a state for which R holds, b is a Boolean expression
and e is an expression. and le is either a simple variable x or an attribute
of an object le.a. Command read(x) allows us read in a value of x and is
defined as:

read(x) =
df
 x’e type(x)

We also define function find(x), add(x) and delete(x) to find, add
or delete related values, such as x, in sets or multi objects. In general,
an expression can be in one of the following forms:

e ::= x | null | new N | self | e.a |  f(e) | e is N

where the type of null is Null which is a class. We can add more expression
such as (N)e and type checking e is N, but in this paper,  let {P

i
 | 1 � i�

n} be a family of designs. We can define alternation if {(b
i
 � P

i
) | 1�

i�n} fi, which selects P
i
 to execute if its guard is true, or behaves like

chaos if all the guards are false.

SPECIFICATION OF UML MODELS
Model of Requirement

In this paper, a UML model of requirement (RM) consists of a
conceptual class model CM and a use case model UM: RM = (CM, UM).
The conceptual model is represented by conceptual class diagram and an
invariant [9]. CM describes the static view and UM the dynamic view of
requirement.

Conceptual model
For giving out a formal definition of a class diagram, assume CN,

AN and AttrN are three disjoint sets, denoting class names, associations
and attributes respectively.

Definition 1. A conceptual class diagram is a tuple:

∆ = < C, Ass, Att, �— >

where C is a nonempty finite subset of CN, called the classes or concept
of ∆. Ass is a partial function: Ass : C (AN   PN   PN   C). N is the type
of natural number and PN is the powerset of N. Att is a partial function:
Att: C    (AttrN    τ), where τ is a set of variables that define the properties
of the objects of the class. We use C.a : T to denote Att(C)(a) = T, and
call an attribute of C and T the type of a. �— � C×C is the direct
generalization relation between classes.

Definition 2. A conceptual model is CM = <∆, Inv>, where ∆
denotes a conceptual class diagram and Inv is state constraint over ∆.

The state of a class diagram is an object diagram that defines a
snapshot of the system with current existing objects, values of their
attributes and links among the objects [8, 9]. A state property ϕ of a
conceptual model can be reasoned about by proving the implication ϑ
� Inv � ϕ in the relational calculus. It also allows us to define
transformation between conceptual diagrams that preserve state con-
straint.

Use Case Model
System executes a system operation when it is called by an actor.

So we model a use case by defining system operations as a command.
Then the model of the system requirements can be specified as the

transition system S =
df
 <CM, Inv, UM, Init>  [10, 9]. With the formal

OO notation, a model RM = (CM, UM) of requirements is specified as
a program cdecls·P, in which cdecls is a sequence of class declarations
that formalize CM and P is the main method that specifies the use cases
UM. The formal semantics of this program defined in [5] captures both
syntactic and semantic consistency between CM and UM. This formal-
ization tightly couples together the static view and the dynamic view of
an UML model of requirement. Any inconsistency between CM and UM,
such as the access to a variable whose type has not been declared in class
diagram or the access to a variable in a method that is not visible in the
class of the method, will lead the program cdecls·P behaves as chaos. In
our framework, we can fix an inconsistency by refining the program.

A library system
Now consider a simple library system. There are various kinds of

publications in the library and each kind of publication has some copies.
Only members registered to the library are allowed to borrow copies of
publications. Reservation service is also provided to members.

Conceptual model
In the first iteration we only concerned one use case RecordCopy

which records copies of some publications to the library, as shown in
Figure 1. We can specify it as the following class declaration section and
denote this declaration section as CM1.

Class Lib{ String name,  String address,  String id};
Class Publication{ String id,  String title,  String author,
String isbn};
Class Copy{ String id};
Class Owns{ Lib lib; Publication p};// Association Classes

Figure 1: Models in the First Iteration
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Class Contains { Publication p; Copy c};// Association Classes
We assume the system initial state is: PLib lib = {lib}; PPublication

Pub = ∅; PCopy Cp = ∅; POwns Ow = ∅; and PContains Co = ∅.

Use case model
An identification of the use case is important for the creation of

the conceptual model. However, the formal specification of the use cases
depends on the specification of the conceptual model. We provide a
canonical form of a use case specification by introducing a class of use-
case handler, which encapsulates the conceptual model [8]. Considering
the use case RecordCopy that adds a new copy of an existing publication
to the library. We specify this use case by introducing a class
RecordCopyHandler:

where the type Services denotes the services that the library system will
provide. Note that a UML conceptual model also determines some state
invariants, such as there is only one Lib instance. The use cases need to
be checked to preserve these invariants [8].

Design Model
A UML model of design DM = (DCM, SD) consisting of a design

class diagram DCM and a family of object sequence diagrams SD.
Similar to the formalization of a conceptual class diagram, we formalize
DCM as a declaration section cdecls

d
. Classes in this declaration section

now have methods and a method of a class may call methods of other
classes. Therefore, the specification of these methods describes the
object interactions. However, methods are activated by commands in
the main program P

d
. Therefore, a UML model of design (DCM, SD) is

only specified as a declaration section cdecls
d
. The consistency between

the class model DCM and the object sequences diagrams SD is captured
by the semantics of cdecls

d
 and the semantics of method calls in the

formal OO notation. The correctness of the design model (DCM, SD)
w.r.t the requirement model RM = (CM, UM) is captured by the
declaration refinement relation cdecls  ‚ cdecls

d
 that is defined in [5].

The main method in the design is almost the same as that in the
requirement model.

A method is described as (m(val T
1  

x, res T
2  

y), c), which have a
name m, signature m(val T

1 
x, res T

2 
y) and a body that is a command

c,  where val T
1
 x is a list of value parameters and res T

2 
 y a list of result

parameters.
Definition 3.  A design class diagram is a tuple:

ℜ = <C, Ass, Att,�—, Met>

where Met is a mapping from C to a set of methods.
An association in a design class diagram is directed and can be

represented as an attribute of the source class. As the multiplicity of the
target role in an association is more than one in general, such that an
attribute is of type of the powerset of the target class. However, when
the multiplicity is {1} or {0, 1}, we only represent it as an attribute with

the class as its type. Therefore, a class diagram can be formally specified
as a sequential composition of class declarations of the form:

Class N extend M {
T  a ;

       D ass ;   // D is either a class C or its powerset PC  for
                     // each association ass from N to C

Method m
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}

A sequence diagram consists of objects and messages that describe
how the objects communicate. An interaction occurs when one object
invoke a method of another.

The library system
Assume for each type PC, methods add( ), delete( ), and find( ) are

declared for adding, deleting and  finding  an object of C in a set. The
object sequence diagram and its corresponding design class diagram in
Figure 1 are specified by the following program. Assume classes Pub, Cp
and M have declared these two methods. The design model DM1 is
constructed as:

Class Lib {String name, String address;
PPublication Pub;   // newly added
Method add(val (String cid,  String pid)) {
var Publication p;
p = Pub.find(pid);  p. makeCopy(cid); end p}}

Class Publication { String id,  String title, String author, String
isbn, Copy-Set Cp;

Method makeCopy (val String id) {
var Copy c; c := New Copy(id); Cp : = Cp.add(c) ;
end c}}

Class Copy {String id }
Class RecordCopyHandler { Publication-Set Pub, Copy-Set Cp,

Contain-Set Co;
Method RecordCopy(val (String cid, String pid)){

Lib . add (cid, pid) end } }

The correctness of the design is captured by the refinement relation
defined in [5].

Iterative and Incremental Development
RUP is a use-case driven, iterative and incremental software

development process. In each iteration, several use cases are chosen and
added to the requirement model RM

1 
= (CM

1
, UM

1
) got in the previous

iteration. Based on the previous analysis and design results DM
1 
= (DCM

1
,

SD
1
), a new requirement model RM

2
 and design model DM

1
 are estab-

lished. RM
2 
can be obtained by enlarging RM

1 
with newly added use cases.

And then a new design model DM
2
 can be obtained from refining RM

2
 and

DM
1
.  Such a refinement is usually called superimposing the design for

the new use cases to the design model DM
1
.

In the next iteration the output of the previous iteration cdecls
1

· P
1
 will be reused in the next iteration cdecls

2
·P

2
, and to preserve the

correctness of the previous iteration, we require cdecls
1
·P

1
 � cdecls

2
 · P

2
.

In particular, we require the declaration refinements to hold:

cdecls
1
 � cdecls,  cdecl

d1
 � cdecls

d2

It means that conceptual and design class diagrams (declarations)
of the new iteration are refinement of those in the previous iteration
respectively.

We use the library system to demonstrate the process. Assume RM
1

and DM
1
 denote the requirement model and design model in the first

iteration. RM
2
 and DM

2
 denote the requirement model and design model

in the second iteration.
In the second iteration, we expand RM

1
 by adding use case RegisterM,

which is used to register a member to the library, as shown in Figure 2.

CM1; // import the conceptual model 

Class RecordCopyHandler { 
       Method RecordC(val(String cid; String pid)){var Copy c 

Εp ε Pub • p.id = pid Η 
c := New Copy(cid); 
Cp := Cp Υ {c}; Co := Co Υ {< p, c >};  end c, p}} 

Use Case RecordCopy :: {  
var RecordCopyHandler h, String cid,  String pid 
h = New RecordCopyHandler(); 
read ( cid, pid ) ; 
h.RecordC (cid, pid); end h, cid, pid} 

The main method is then specified as: 

 main( ){var Bool stop,  Services s,  stop : = false; 
                     while !stop do {read(s); 

 if{(s = ”RecordCopy”) → RecordCopy} fi;  
read(stop)}; end stop, s} 
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The conceptual model CM1 is extended to CM2:

CM1; //Reuse conceptual model
Class Member{String name, String title, String id, String

address};
Class Has {Lib lib, Member m};

Use case The use-case handler for RegisterM is then specified as: let
StringList be the type of the list of strings of the attributes of

Member : StringList l - {String name × String title × String id ×
String address}
Class RegisterMHandler {

 Method RegisterM (val (StringList l)){

�∃m e M· m.id = mid �

m: = New Member(l)

�M’ = M ∪ {m}� has’ = has ∪ {< lib, m >}}}
Use Case RegisterM :: { var RegisterMHandler mh, StringList l;

mh := New RegisterMHandler( ); read(l);
mh.RegisterM(l); end mh,  l}

    Like the use case record copy, use case RegisterM can be verified
or tested alone. Then the main program will be enlarged into the
following one by adding RegisterM as a service:

main(){ var Bool stop, Services s;
        stop := true;
        while !stop do {read(s);

if {(s = ”RecordCopy”) → RecordCopy} fi;
if {(s= ”RegisterM”) → RegisterM} fi;
read(stop)}}

Design model, in turn, is expanded as following. The interaction
diagrams and associated class diagram are shown in Figure 2.

Class Lib {String name, String address, Publication-Set Pub,
Member-Set M; // newly added

Method add ( val (String cid, String pid ) ) {
 var Publication p;
 p = Pub.find(pid);
p.makeCopy(cid);
end p}

makeMember(val StringList l){var Member m;
m = New Member(l); M := M.add(m); end m}

}
CM2 ; CM1; // import newly added classes
DM1; //import preceding design model
Class RegisterMHandler {Memeber-Set M, Has-Set has;

Method RegisterM(val StringList l){ var Member m;
 m := New Member(l); M := M.add(m); end m}}

Use Case RegisterM  // unchanged

Without any change to the conceptual model CM2, we can also
specify and design use cases SerchMember, SerchPublication and
SerchCopy. The software system is then enlarged iteration by iteration.

CONCLUSION
We have presented a formal method to support the iterative and

incremental software development. The method is based on a formal
model of specification and refinement of object-oriented systems in [5].
The important nature of this method is that each iteration only
considers a small part of the system functionality. Instead of using a
traditional compositional approach, we decompose the system infor-
mally according to use cases. Therefore, we can work with a small model
at a time. Then the formal model obtained in each iteration is composed
to form a larger system.

Figure 2: Models in the Second Interation
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Our primary motivation is to enhance UML and RUP with formal
method and unifying views of UML models. This can be done by defining
precise description of the requirement models and design models, as well
as developing mechanisms, so that developers can rigorously analyze the
models.

There is a lot of existing work on formalization of UML, but it is
difficult to give a relatively full account of it, because of the space
limitation. However, the major distinct nature of our work is that it
concerns on the consistent relations (both horizontal and vertical)
among the different models rather than the formalization of a particular
model. Another advantage of our work is that the notation is Java-like
and easy to use. Further more the semantics is relational and based on
first order logic that are easy to understand.

Further work includes the extension of this method to component-
based software development [12, 14, 2, 3].
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