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ABSTRACT
An access control policy of an organization specifies the access rules
among subjects and objects. Depending on security clearance or data
sensitivity, subjects and objects are divided into classes. The organization
is hierarchical if classes are a partial ordered set (POset) on the access
relation. Akl and Taylor first proposed a key assignment scheme to
enforce access control in a hierarchy by assigning derivable keys to
different classes. In the literature, most papers in the field focused on
inventing different key assignment strategies to enforce such hierarchical
policies. However, in practice, more complex policies may be necessary
for real systems where transitive and antisymmetric exceptions are
involved. This paper presents an algorithm which is capable of translating
any policy from a hierarchy-with-exception to a hierarchy so that all
existing hierarchical key assignment schemes can be used to enforce this
richer set of policies.

INTRODUCTION
Based on security clearances, different subjects may access objects

with different sensitivity. To model such system, all subjects and objects
with the same level of clearance or sensitivity are assigned to one
security group or class. An access policy specifies which class may access
another. The most simple policy model exhibits a hierarchical structure
with three POset properties. The three properties are reflexive, tran-
sitive and antisymmetric. The reflexive property is necessary for any
system because a class should always have the right to access its own data.
However, the other two properties are not always required in a system,
especially in a distributed environment. The transitive property usually
forms an access chain which means that if A can access B and B can access
C, then A can access C. This property makes the system less flexible on
policy development. The antisymmetric property considers two classes
to be equivalent if they can access each other. This property puts too
many restrictions on class partition. Fortunately, with transitive excep-
tions, this restriction can be relaxed. Two classes having the right to
access each other are not required to be equivalent if there are transitive
exceptions which make these two classes having different access rights
to or from other classes. By taking out or relaxing these two properties,
the policy domain could be enlarged from a hierarchy to a hierarchy-
with-exception. This new domain includes all hierarchical policies and
those policies with transitive and antisymmetric exceptions.

Akl and Taylor first proposed a key assignment scheme [1] to
enforce access policies in a hierarchy. One key is assigned to each class.
Each class uses its assigned key to protect data against illegal accesses.
The scheme assigns keys in such a way that each class A is capable of
deriving the key for class B from its own key only if the policy allows
A to access B. The key derivation coincides with the access policy among
classes. Therefore, the access policy can be enforced by these assigned
keys. After Akl and Taylor presented their scheme, many different key
assignment schemes [2-14] have been proposed in the literature. Most

of them tried to find different ways to assign keys to enforce the same
set of policies, i.e., policies in a hierarchy. The applicable domain of
policies has never been studied. This paper presents a richer set of
policies, hierarchy-with-exception, and proposes an algorithm to trans-
late any policy in the new domain to a corresponding policy in a
hierarchy. Therefore, any policy in a hierarchy-with-exception can be
enforced by applying any existing key assignment scheme to the
corresponding policy in a hierarchy.

This paper is organized as follows. Section 2 shows how to represent
an access control policy using a matrix. Section 3 presents a generic
algorithm to translate any policy from a hierarchy-with-exception to
a hierarchy. Section 4 argues that the keys assigned to classes in the
translated hierarchical policy using any existing key assignment scheme
can be used to enforce the original hierarchy-with-exception policy.
Section 5 concludes this paper.

MATRIX REPRESENTATION FOR POLICY
An access policy can be represented using a matrix. Suppose that

a system’s subjects and objects are divided into n distinct classes C = {C1,
C2 … Cn}. Under this partition, an n × n matrix is enough for specifying
any access policy among these n classes if both i-th row and i-th column
of the matrix represent i-th class.

This section defines three different forms of matrices for an access
policy. A matrix L1 of the first form only specifies which other classes

each class may access. Its definition is as follows:

A matrix L2 of the second form is derived from L1 to explicitly
indicate the existence of transitive exceptions. Its definition is as
follows:
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A matrix L3 of the third form can be generated from L2 by further
including more information of transitive exceptions. The third form L3
will be used as an input to the translation algorithm presented in the next
section. Its definition is as follows:

The transformations from L1 to L2 and then from L2 to L3 can be
accomplished by the following two algorithms. Algorithm 2.1 computes
the transitive closure L1* of L1 and compares L1* and L1 to discover
the existence of transitive exceptions.

Algorithm 2.1 Let L1 be a policy matrix of the first form. Then the
following algorithm translates L1 to a policy matrix L2 of the second
form.

L2 = L1 - (L1* - L1) = 2L1 - L1*

Given a matrix L2 of the second form, Algorithm 2.2 generates a
policy matrix L3 of the third form by finding out those intermediate
classes for transitive exceptions.

Algorithm 2.2 Let L2 be a policy matrix of the second form. Then
the following algorithm translates L2 to a policy matrix L3 of the third
form.

An example of a matrix L1 of the first form with 6 classes is given
in Table 1. Table 2 and 3 show the resulting L2 of the second form and
L3 of the third form by applying algorithm 2.1 and 2.2 respectively.

To test whether a policy is hierarchical, either one of the above two
algorithms can be used. If a policy has the same first, second and third
forms, then there is no transitive exceptions, and hence, it is hierarchi-

cal. Any policy in a hierarchy is also in a hierarchy-with-exception. For
each of those policies not in a hierarchy but in a hierarchy-with-
exception, its first form is different from its second form since the
second form will have some -1 entries representing the existence of
transitive exceptions. An algorithm provided in the next section tries
to translate any hierarchy-with-exception policy to a hierarchical
policy with possibly more classes, and then any existing hierarchical key
assignment scheme can be applied to enforce it.

TRANSLATION ALGORITHM
Since a matrix represents an access policy among classes, these two

words “matrix” and “policy” will be used interchangeably hereafter.
Given a hierarchy-with-exception policy L1 of the first form, Algorithm
3.1 presented in this section translates it to a corresponding hierarchical
policy M1 of the first form, in which the dimension of L1 is less than
or equal to the dimension of M1. The growing dimension from L1 to M1
is because a class may spawn another class during the translation if it is
an intermediate class for any transitive exception. The intermediate
class information of a policy is explicitly indicated in its third form.
Therefore, the translation Algorithm 3.1 is accomplished by first
applying Algorithm 2.1 and 2.2 to transfer L1 to L3 and then applying
some other rules to map L3 to M1.

Algorithm 3.1 The following five steps translate an n × n policy
matrix L1 to its corresponding m × m matrix M1, where n d•m and L1
is a matrix representation for a policy in a hierarchy-with-exception and
M1 is its corresponding matrix representation in a hierarchy.

1. Transfer L1 of the first form to L2 of the second form and then
to L3 of the third form by performing algorithms 2.1 and 2.2
respectively.

2. Determine the set of indexes for intermediate classes I = {i | �
1 ≤ i ≤ n, if � k, where 1 ≤ k ≤ n, such that L3[k,i] = 2}.

3. For each class Ci, spawn another class Ci’ if i � I.
4. Create an m × m matrix M1, in which m = n + |I|. Both rows and

columns of M1 are indexed as L1 except a new row i’ and a new
column i’ are inserted right after all i � I.

5. Fill each entry of M1 as follows.
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for i � 1 to n  
  for j � 1 to n 
    { 
     L3[i,j] = L2[i,j] 
     if L2[i,j] = 1 
       for k � 1 to n 
         if L2[j,k] = 1 & L2[i,k] = -1 
          { 
           L3[i,j] = 2 
           break 
          } 
    }   

Table 1: A matrix L1 of the first form with 6 classes

Ci 1 2 3 4 5 6 
1 1 1 1 1 -1 1 
2 0 1 0 1 1 1 
3 0 0 1 0 1 1 
4 0 0 0 1 0 1 
5 0 0 0 0 1 1 
6 0 0 0 0 0 1 

Ci 1 2 3 4 5 6 
1 1 1 1 1 0 1 
2 0 1 0 1 1 1 
3 0 0 1 0 1 1 
4 0 0 0 1 0 1 
5 0 0 0 0 1 1 
6 0 0 0 0 0 1 

Table 3: A matrix L3 of the third form

Table 2: A matrix L2 of the second form

Ci 1 2 3 4 5 6 
1 1 2 2 1 -1 1 
2 0 1 0 1 1 1 
3 0 0 1 0 1 1 
4 0 0 0 1 0 1 
5 0 0 0 0 1 1 
6 0 0 0 0 0 1 
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Table 4 gives the resulting matrix M1 after applying Algorithm 3.1
to the matrix L1 in Table 1, where M1 is simply a hierarchical policy.
Algorithm 2.1 could be used to test whether M1 is hierarchical. With the
transferred matrix M1, any existing key assignment scheme in literature
can be used to assign keys to enforce M1 in the expanded system.
However, it is the policy L1 in the original system, not the policy M1
in the expanded system, which needs to be enforced. Next section will
introduce a two-key assignment concept and it will become clear that
enforcing M1 is actually equivalent to enforcing L1.

SEMANTICS BEHIND THE TRANSLATION
Algorithm 3.1 translates a policy L1 to another policy M1 with

possibly more classes. It seems that these two policies are different.
However, with proper interpretation, these two policies are actually the
same.

All existing key assignment schemes only assign one key per class.
Under this scenario, it is impossible to enforce transitive exceptions.
That is because if there is a transitive exception from Ck to Cj, in which
another class Ci is an intermediate class for this exception, then Ck can
always derive Cj’s key by first deriving Ci’s key. This one-key assign-
ment dilemma for transitive exceptions can be solved by assigning two
keys to all intermediate classes, where one key is for encryption and the
other key is for derivation. The way to enforce transitive exceptions
by two-key assignments is depicted in Figure 1.

In Figure 1, Ck and Cj have only one key Kk and Kj respectively.
They can be used for both encryption and derivation. The intermediate
class Ci has DKi as its derivation key and has EKi as its encryption key.
Ck can access Ci and Ci can access Cj since Kk can derive EKi and DKi
can derive Kj. However, Ck can not access Cj because there is no key
derivation path from Kk to Kj.

There are two access semantics for a class, which are “who can
access the class” and “who can be accessed by the class”. The first
semantic is for encryption because a class can use an encryption key to
encrypt data to control who can access the class. The second semantic
is for derivation because a class could use a derivation key to derive
another class’s encryption key to access its data. The reason for a class
to spawn another class in Algorithm 3.1 is to separate these two access
semantics. Suppose that any intermediate class Ci in L1 has two assigned
keys DKi and EKi as in the Figure 1. After the translation from L1 to
M1, if Ci spawns Ci’, then Ci in M1 inherits the encryption semantic and
get the encryption key EKi, whereas Ci’ in M1 inherits the derivation
semantic and get the derivation key DKi from the original Ci in L1. This
separation for two access semantics is the core to enforce transitive
exceptions.

The question left is that how we assign two keys to all intermediate
class Ci in L1. This paper does not try to propose any new key assignment
scheme to assign two keys; instead it applies any existing one-key
assignment scheme to assign one key to all classes in the corresponding
hierarchical policy M1, then combines the keys assigned to Ci and its
spawned class Ci’ in M1 together for the class Ci in the original policy
L1. The following list gives the itemized summary.

1. Translate a policy L1 in a hierarchy-with-exception to a corre
sponding policy M1 in a hierarchy by applying Algorithm 3.1.
Any intermediate class Ci will spawn another class Ci’. Step 5 in
Algorithm 3.1 makes sure that Ci inherits the encryption seman
tic and Ci’ inherits the derivation semantic. That is, any other
class can access Ci in L1 should still be capable of accessing Ci but
not Ci’ and any other class can be accessed by Ci in L1 should be
capable of being accessed by Ci’ rather than Ci.

2. Apply any existing one-key assignment scheme to assign keys to
classes in M1. Let Ki be the key for Ci and Ki’ be the key for Ci’
if Ci’ exists.

3. For each intermediate class Ci in L1, let Ki be its encryption key
and Ki’ be its derivation key. For each non-intermediate class Ci
in L1, let Ki be both its encryption and derivation key.

With the assigned key(s) for each class Ci in L1, Ci is capable of
encrypting its own data using the encryption key to protect against
illegal accesses from other classes and is capable of accessing other
classes’ data by first deriving their encryption key using its own
derivation key.

CONCLUSION
A simple and generic algorithm is proposed in this paper to extend

the domain of enforceable policies, from a hierarchy to a hierarchy-
with-exception, for any existing key assignment scheme in literature.
The algorithm accomplishes the extension by first performing a
sequence of translations from a policy in a hierarchy-with-exception to
a corresponding policy in a hierarchy, and then any existing key
assignment scheme can be applied to assign keys to classes in the
translated policy. Section 4 describes how to use these assigned keys of
the translated policy in a hierarchy to enforce the original policy in a
hierarchy-with-exception. The semantics behind the translations are
also addressed in Section 4.

Table 4: A translated hierarchical policy M1 from a hierarchy-with-
exception policy L1 in Table 1

Figure 1: The way to enforce a transitive exception by assigning two keys
to an intermediate class, where DKi is the derivation key and EKi is the
encryption key.

Ci 1 2 2’ 3 3’ 4 5 6 
1 1 1 0 1 1 1 0 1 
2 0 1 0 0 0 0 0 0 
2’ 0 1 1 0 0 1 1 1 
3 0 0 0 1 0 0 0 0 
3’ 0 0 0 1 1 0 1 1 
4 0 0 0 0 0 1 0 1 
5 0 0 0 0 0 0 1 1 
6 0 0 0 0 0 0 0 1 
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