
Innovations Through Information Technology 189

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Measuring Quality Metrics
for Web Applications

Ben Lilburne
School of Computing and Information Technology, University of Western Sydney, Locked Bag 1797 Penrith DC,

NSW 1797, Australia

Prajwol Devkota
School of Computing and Information Technology, University of Western Sydney, Locked Bag 1797 Penrith DC,

NSW 1797, Australia

Khaled Md. Khan
School of Computing and Information Technology, University of Western Sydney, Locked Bag 1797 Penrith DC, NSW 1797

Australia, k.khan@uws.edu.au

ABSTRACT
This paper makes an attempt to propose a framework for measuring
quality attributes of web-based application systems. This paper is
particularly interested in three major quality attributes: usability and
reliability from users point of view; and maintainability for the
developer’s perspective. The diverse nature of web applications makes
it difficult to measure these using existing quality measurement models.
Web applications often use large numbers of reusable components which
make traditional measurement models less relevant.

INTRODUCTION
The quality of a web application could be measured from two

perspectives: quality perceived by the programmers, and quality expe-
rienced by the end-users. A website with thousands of manually main-
tained static pages, each providing similar content, will not have the
same degree of maintainability as a site providing the same content
through a database and generated pages. In a traditional non web-based
system, if the usability and reliability are poor, the user will still have
to use it hoping that the next release of the software would fix the
problem. In a web-based system, users will simply leave the site and go
elsewhere once they find it unacceptable.

Web-based systems have to be maintained constantly to keep their
functionality and contents up to date. Web applications have several
features that make traditional software quality metrics less effective in
producing realistic quality measurements. Web applications tend to be
pieced together using a number of components, scripts, static mark-up
pages, templates and media files.

Broadly, we can form several categories for contents on the web
such as static, semi static, and dynamic in terms of web pages and media.
Static pages are simple mark-up, with no dynamic content on them.
Media images such as audio, video, special effects are considered to be
static media. Semi static pages or media can be generated from templates,
but without using any significant programming. This includes template
languages such as XSLT, XML [2] and similar others. This also includes
some client side scripting, such as JavaScript for rollover effects.
Dynamic contents are generated as requested using server side programs,
or non-trivial client side scripting.

The rates of change in the web format, computational logic and
contents may vary considerably, and these are heavily dependent on the
domain of the web application and business logic. These changes have
considerable effect on the usability, reliability and maintainability of
web applications. Our approach is based on the classical factor-criteria-
metrics model [7] proposed for non web-based software systems.

The paper proceeds as follows. In section 2, we cite a brief
discussion on related research work in this area. Maintainability,

reliability and usability are further spelled out in terms of their assess-
ment criteria and sub factors in section 3. Section 4 presents an
assessment model for the web application. The paper finally concludes
in section 5.

RELATED WORK
Although research on measuring usability, reliability, and main-

tainability of web-based systems is seriously underrepresented in current
software engineering literature, there are some research efforts reported
recently. Olsina et al. [3] describes a quality evaluation method for
academic websites, which involved a case study on several university
websites The research effort only addresses user’s perspective to web-
based systems. The measurements are based on the documents provided
over the web to the browser, with no mention of how these documents
may be delivered.

Current metrics for websites seem to be concentrated on counts of
pages, links and media files. The work reported in [4] uses reused media
counts to measure the reusability of a site and measures based on internal
links to measure complexity. The approach in [5] computes size and
effort metrics based on the number of components, with various
categories of components. The intrinsic quality of the atomic compo-
nents has not been taken under consideration in the metrics calculation.

Many software quality factors have already been defined and some
authors have defined quality factor for web. Boehm’s software quality
model [1], McCall’s [7] software quality models are some early and
widely used models. Some web quality factors have already been proposed
in [3] and [8].

WEB QUALITY FACTORS
Today web-based software is diverse. Different consumers can have

different definitions of quality for the same web-based product. A fixed
model is not suitable to address all of the quality requirements of web
applications, since the requirements vary for different kinds of sites.
Our aim is to propose a simple web quality model that is most common
to all web-based software. Then let the software professionals and users
tune and redefine the model according to their needs. To specify a quality
goal, we use Factor-Criteria-Metrics structure [7] as shown:

<a_Quality_Goal>
<a_set_of_Criteria_for_the_Goal>

<a_set_of_Metrics>

A factor, typically a high level quality goal, is measured in terms
of a set of criteria. Each criterion can then be quantitatively measured

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,
Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

190 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

against a set of metrics. We propose new quality criteria for maintain-
ability, reliability and usability that we believe are important for web-
based software.

Maintainabi l i ty
It is already well established that a website should be treated as a set

of components. Our interest is to consider the nature of these compo-
nents, and how they affect the web site’s quality. Web sites differ from
most software systems in a number of ways. They are changed and
updated constantly after they are first developed. As a result of this,
almost all of the effort involved in running a web site is maintenance.
We will use the following criteria for estimating maintainability (from
ISO 9126):

• Analysability
• Changeability
• Scalability
• Stability
• Testability

We now look at each of these criteria and their metrics in the
following subsections.

Analysability
Weinberg [6] identifies one of the primary problems when analysing

a computer program is locality. Locality is defined as how the related
components close together in the structure of a program, and this has
a lot of influence on how easily a web site is analysed. Because a web site
has a number of interrelated components, some of which perform one
task as a unit (an HTML form and a CGI to process it, then another static
HTML page that has a ‘thank you’ note for example). We will use the
number of components used to perform a task as a measure of inter-
component locality in a web application. The analysability of web
application can be measured by using the following methods:

• Locality (L): Average number of components per task. 1/1
(100%) is the best ratio here. As more components are used to
perform a single task, the locality score decreases.

• Error reporting (ER): The error reporting score is calculated
using Table 1. Starting with 0 and adding the given amount for
each point we have.

• Style consistency (SC): Components with consistent style to
total components, best ratio is 1/1 (100%). Any components that
are inconsistent in style will reduce this score.

The total score for analysability is calculated as

3

SCERL ++

Changeability
For changeability we are interested in how easily the data, format-

ting and program logic in the website can be changed. This can be
measured with the following metrics:

• Dynamic data ratio (DDR): The proportion of the data that is
generated by programs on the server side, including data that is

extracted from a database. It is calculated as

• Dynamic format ratio (DFR): The proportion of the format that
is generated from specific formatting modules, such as templates
or a library of format function. The calculation is simple:

formats of number Total

templates of Number

• Pages/format ratio (PFR): The number of pages presented on the
client side that follow a specific defined format. A percentage
score for this can be calculated as:

100×
pages of number

format of number

• Pages/data ratio (PDR): The proportion of pages presented on
the client side that use the same data or present similar forms of
data. This can be computed as:

100×
pages of number

data similar withpages of number

• Program/documentation score (PS): A percentage score aver
aged over all of the programs in the web site, where each program
is reviewed using either peer review or some other program quality
assessment methods. The review should of course be with the
perspective of how easy the program logic is to change.

• Data change rate: This is a percentage score indicating how
important changes in the data will be.

• Format change rate: This is a percentage score indicating how
important formatting changes will be.

The dynamic data and format ratios are used to determine the
current amount of data provided by the site that is dynamically
generated. This ratio is then adjusted by the change rates and page ratios
as:

100
))(

1 ×+×+×−
2

PS PFRDFRPDR)((DDR

which is the average of the program score and the changeability of data
and formats. The overall significance of this changeability number
should be weighted with the averages of the expected change rates, so
a “brochure” style site will not consider changeability as an important
criterion.

Problems can occur here when a script can generate an unlimited
number of pages. In such a case, an approximate count for the number
of pages someone might like to see can be used, or if the output is trivial,
such as generated totals on an order form, a count of 1 should be used.

Scalability
Scalability of a web-based software can be defined as the ability to

adjust configuration size to fit new conditions and ability to change
scaling of an application. Unlike traditional software, web-based system
has tendency to grow exponentially. This can get to an unexpected
level.

When the number of users increases it is important that the web-
based software is able to handle the load or easy to scaled up to handle
the load. The hardware platform should also be easy to scale up to cope
with the rising load without effecting the operation of the site.

Scalability is an important quality factor for web-based software as
it has very high potential to grow unexpectedly. The criteria could be
how the system handles an increase number of users.

Table 1: Error Reporting Score

Errors on web pages, no location 0
Errors have location +25
Errors are kept in a log +25
Critical errors are e-mailed +25
Verbose error reports +25

Dynamic pages

total pages

Innovations Through Information Technology 191

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Stability
Stability is defined as the attributes of a software product that have

an influence on the risk of unintended consequences as a result of
modifications. There are some specific cases of this sort of consequence
in web applications, such as broken links as a result of changing the name
of a page. For example, in a highly coupled web system where many links
pointing to one page, and if that page is moved or removed, all of the
links referring to that page must be changed accordingly. The metrics
could be:

Page-page coupling (PPC): This is 1/the number of direct links to
a page, averaged over all of the pages on the site. Links that are used in
multiple pages, but are extracted from the same source (such as a
database) should only be counted once.

Testability
Each update to a site made during maintenance should be testable,

preferably before the changes go live (online). Since the site can be tested
through a web browser exactly like black box testing, it sounds simple.
However, testing individual components could be problematic. Most CGI
scripts can have values entered manually at a terminal, but the output
is made for a browser, not a human.

The varied nature of methods used to test web-based software makes
these criteria difficult to measure generally. Rather than using a general
rule, we will provide a number of questions that contribute to how testable
a web system is. Start at 0 (no testing), and add values according to Table
2.

We have given each of these questions equal weight, however in
reality some of these factors are more important than others. In some
cases, analysing server logs is the most important part of testing a
running system [3]. This scoring could be adjusted according to the
importance of the questions in a particular context.

Rel iabi l i ty
Reliability is a very important factor for Web-based systems. We

define reliability into two as information reliability and operational
reliability. Operational reliability is an important criterion for any e-
commerce based web application. However, operational reliability does
not apply to information serving web-based systems. Operation and
information reliability is a must for all types of web-based systems.
There should be no web-based software that allows for intentional
operation failure, wrong information and transactional errors.

The major criteria for reliability include consistency, accuracy,
completeness, availability and fault tolerance. Consistency, accuracy
and completeness address the quality factor information reliability.
Whereas, fault tolerance concerns the factor operational reliability.
Information reliability is a quality factor which has three criteria:
completeness, accuracy, and consistency. Each of these has directly
measurable metrics. We propose the following factors, criteria and their
metrics for reliability in a hierarchical structure:

Usabi l i ty
Usability of a web-based system is very important for a simple

reason - competitiveness. Unlike traditional software, users are not
confined to use web sites that they do not feel comfortable with. Users
can easily switch to another website that is more easy to use. Usability
is therefore considered most important factor of web-based software and
application.

Defining a common set of usability criteria is not a good idea as
usability requirements for different web sites can be different. Usability
requirements of a web site may change from time to time based on the
available technology and business competitiveness. For these reasons
usability criteria for a web site is best derived from functional specifi-
cation.

MaCall’s software quality model [7] lists operability, training,
communicativeness, I/O volume and I/O rate as the usability criteria.
Training is not applicable to web sites; it is only applicable to intranet
with closed user group. We think availability of ‘help’ option is more
appropriate to all types of web-based software. I/O volume and I/O rate
better defined as speed. With some refinement to MaCall’s criteria we
propose the following criteria for usability:

THE FRAMEWORK
In devising our framework we have followed Ejiogu’s [11] at-

tributes, and in addition we have included some of our own criteria. As
shown in Figure 1, Quality Compliance Framework (QCF) consists of
components such as quality measurement, quality goal (factor), quality
sub-goal (criteria), and quality attributes (metrics).

Quality measurement is the quality achievement in terms of a
percentage value that indicates the degree of an overall quality compli-
ance of the system. For example, a score of 95% for a system means
the system has 95% of quality compliance with the defined quality
properties for that system.

Quality goal is a high level quality factor of a system. A quality
goal may have many levels of quality sub-goals or quality attributes.
Usability is a common example of a quality goal. A system’s usability

Table 2: Testability Score

Offline testing available? 20
Previous test results available? 20
Specific testing modes for scripts? 20
Components can be tested
individually?

20

Server Log analysis tools available? 20

<Information Reliability> (Factor)
 <Completeness> (Criteria)
 <number of broken links?> (metrics)
 <Accuracy> (Criteria)
 <degree of info. accuracy>(metrics)
 <Consistency>)(Criteria)
 <degree of info. consistency>
<Operational Reliability> (Factor)
 <Availability> (Criteria)
 <site uptime> (metrics)
 <Error tolerance> (Criteria)
 <number of un-trapped errors>
 <number of fault recovered>

<Usability> (Factor)
 <Operability> (Criteria)

<easy to use a functionality>
 (metrics)
<degree of navigability>
 (metrics)

 <Accessibility to help> (Criteria)
<on-line help/support> (metrics)

 <Communicativeness> (Criteria)
 <easy to comprehend the content>
 (metrics)
 <Speed and space> (criteria)

<response time> (metrics)
<memory space required> (metrics)

Figure 1: Quality Compliance Framework(QCF)

Quality Measurement

Quality Sub-Goal

Quality Goal

Quality Sub-Goal

Quality Sub-GoalQuality Sub-Goal

Quality Goal

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

Q
u

ality A
ttribute

 Metrics

192 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

of 90% means that the system has 90% compliance with usability goal
criteria defined within the quality model of that system.

Quality sub-goal (criteria) is a lower level quality goal that breaks
down its parent goal to more measurable goals. A quality sub-goal can
have more quality sub-goals or quality attributes. For example, usability
may have sub-goal such as operability, learnability and so on.

Quality attribute(metrics) is a measurable unit of quality in QCF.
A quality attribute may belong to one or many quality goals or quality
sub-goals.

QCF provides the quality measurement in a simple quality compli-
ance scale. The scale starts form 0% and ends at 100%, where 0%
indicates no quality compliance and 100% indicates full quality compli-
ance. This is the QCF score of the web system.

QCF works using bottom up approach. The metric for an attribute
is converted to a 0% to 100% scale. Then the higher-level QCF score
is calculated based on the QCF scores earned by the lower level children
attributes, sub-goals, or goals.

Final score is the Quality measurement QCP. Following formulas
show how the QCP is calculated for different components of QCF:

• Quality Measurement

• Goal and sub-goal QCF score

• Attribute QCF score

Here, “Children” refers to the Quality goals, Quality sub-goals, or
Quality attributes in the hierarchy.

 Different phases of software development life cycle will have
different set of quality goals, attributes and metrics. QCF allows the
separation of these phases but gives one quality measurement of the
software at any stage. An important question may be raised when
defining quality goals and attributes. How do we stress on important
quality goals? It depends on the use context and the type of the web
system. To increase the importance of a quality goal, weighting is to
be adjusted to the goals in the form of a multiplier to that goal and to
decrease the significance of other goals. This means that the simple
formulas to calculate average values discussed above will need to be
replaced with weighted averages.

QCF can give an early quality feedback throughout the web
development process. For example, if there is a drop in overall quality
score, anyone can drill down to lower level and find the area where the
quality is suffering. Project managers and system owners can use QCF
to ensure every phase of software development complies with the
defined quality factors.

In the case of scores that do not naturally appear as percentage
scores, a target score can be used to get a percentage. QCF allows
managers to drill down and identify weak quality attributes. As a score
is computed for each goal, sub goal and attribute individually, these
scores can be used to identify weak points in the project that need further
improvement.

CONCLUSION
In this paper, we have presented a framework for measuring the

quality of web-based systems particularly for maintenance, reliability
and usability. The framework we have presented is by no means a final
conclusion on how web-based systems can be measured, but we have
provided a framework which can be extended by it’s users, and we believe
that this is a step to more effective measurements of web quality.

We acknowledge that our framework does not include a complete
set of objective measurements to cover every aspect of web quality. It
is expected that organisations need to define their own quality factors,
criteria and metrics specific to their system context. The use of some
of our metrics for maintainability becomes more difficult when the site
has a lot of dynamic contents. Links that are generated from a database
should not be counted the same as static links, but this is difficult to
determine on the client side. Over time, we expect that methods can be
found to measure objectively many of the criteria we have proposed.

For the future, we suggest creation of an open knowledge base of
web-based software’s quality factors, criteria, and metrics. Software
professionals can then make use of already defined model that suits them
or find the closest model and modify it according to their needs.

REFERENCES
[1] Boehm, B., Brown, J., Lipow, M., “Quantative evaluation of

software quality”, Proc. Int’l conf. on software Engineering, IEEE
Computer Society press, 1976.

[2] W3C:XSL Transformations (XSLT), http://www.w3.org/TR/
xslt (website)

[3] L. Olsina, D. Godoy, G. J. Lafuente and G. Rossi, “Specifying
Quality Characteristics and Attributes for Websites”, Web Engineering,
2001, pp. 266-278.

[4] R. Fewster, E. Mendes, “Measurement, Prediction and Risk
Analysis for Web Applications”, 7th International Software Metrics
Symposium, 2001, pp 338-348.

[5] D. Reifer, “Web Development: Estimating Quick-to-Market
Software”, IEEE Software, November/December 2001, pp 57-64.

[6] G. M. Weinberg: The Psychology of Computer Programming,
1979.

[7] Cavano, J., McCall, J., “A Framework for the Measurement of
Software Quality”, Proc. ACM Software Quality Assurance Workshop,
November 1978, pp. 133-139.

[8] J. Offutt, “Quality Attributes of Web Software Applications”,
IEEE Software, IEEE, March/April 2002, pp. 25-32

[9] Fenton, N. E., Pfleeger, S. L, Software Metrics a Rigorous and
Practical Approach, PWS Publishing Company, International Edition,
1997

[10] Pressman. R, Software Engineering A Practitioner’s ap-
proach, McGraw-Hill, International Edition, 1997

[11] Ejiogu, L., Software Engineering with Formal Metrics, QED
Publishing, 1991.

'

._ _

childrens QCF
QualityMeasurement

No of Children
= ∑

'
_

._ _

Childern sQCF
GoalQCF score

No of Children
= ∑

100%
EarnedScore

AttributeQCF
PossibleScore

= ×

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/measuring-quality-metrics-web-

applications/32331

Related Content

FLANN + BHO: A Novel Approach for Handling Nonlinearity in System Identification
Bighnaraj Naik, Janmenjoy Nayakand H.S. Behera (2018). International Journal of Rough Sets and Data

Analysis (pp. 13-33).

www.irma-international.org/article/flann--bho/190888

Design
 (2012). Design-Type Research in Information Systems: Findings and Practices (pp. 1-24).

www.irma-international.org/chapter/design/63103

DISMON: Using Social Web and Semantic Technologies to Monitor Diseases in Limited

Environments
Ángel M. Lagares-Lemos, Miguel Lagares-Lemos, Ricardo Colomo-Palacios, Ángel García-Crespoand

Juan Miguel Gómez-Berbís (2013). Interdisciplinary Advances in Information Technology Research (pp. 48-

59).

www.irma-international.org/chapter/dismon-using-social-web-semantic/74531

Feature Engineering Techniques to Improve Identification Accuracy for Offline Signature Case-

Bases
Shisna Sanyal, Anindta Desarkar, Uttam Kumar Dasand Chitrita Chaudhuri (2021). International Journal of

Rough Sets and Data Analysis (pp. 1-19).

www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-

signature-case-bases/273727

Information Systems on Hesitant Fuzzy Sets
Deepak D.and Sunil Jacob John (2016). International Journal of Rough Sets and Data Analysis (pp. 71-97).

www.irma-international.org/article/information-systems-on-hesitant-fuzzy-sets/144707

http://www.igi-global.com/proceeding-paper/measuring-quality-metrics-web-applications/32331
http://www.igi-global.com/proceeding-paper/measuring-quality-metrics-web-applications/32331
http://www.irma-international.org/article/flann--bho/190888
http://www.irma-international.org/chapter/design/63103
http://www.irma-international.org/chapter/dismon-using-social-web-semantic/74531
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/article/feature-engineering-techniques-to-improve-identification-accuracy-for-offline-signature-case-bases/273727
http://www.irma-international.org/article/information-systems-on-hesitant-fuzzy-sets/144707

