
238 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

VERBUS: A Formal Model for
Business Process Verification

Jesus Arias Fisteus
Telematic Engineering Department, Carlos III University of Madrid, Avda. Universidad, 30, 28911 Leganes (Madrid), Spain,

jaf@it.uc3m.es

Andres Marin Lopez
Telematic Engineering Department, Carlos III University of Madrid, Avda. Universidad, 30, 28911 Leganes (Madrid), Spain,

amarin@it.uc3m.es

Carlos Delgado Kloos
Telematic Engineering Department, Carlos III University of Madrid, Avda. Universidad, 30, 28911 Leganes (Madrid), Spain,

cdk@it.uc3m.es

ABSTRACT
Business process management is a key issue in B2B. Different process
modelling languages and workflow management tools and frameworks
have appeared to aid the development, deployment and management
of e-commerce solutions. Nevertheless, there is not yet a framework to
compel with tasks such as guaranteeing: safety outcomes of the run of
a composition of processes, the eventual execution of processes under
some condition, or the soundness of a design with respect to the
specification. This is the mission of formal methods, and they have been
successfully applied in the fields of real-time software, hardware
verification, and a growing list of application areas as the computation
costs decrease. In this article we present VERBUS, a formal system for
the modelling and verification of business processes. VERBUS allows
a designer to specify properties for verification. The Finite State
Machine theory is under the hood of VERBUS, providing the designer
with a well-known and understandable approach, which offers a set of
existing tools for verification or for compiling to other formats for the
application of model–checkers.

INTRODUCTION
Business processes define the way in which an organization per-

forms its business activities. From a design perspective a business
process: is the container of a set of activities with a particular goal; is
often carried out by a collaboration team; can overpass the bounds of
an organization; can be initiated as a reaction to events external to the
organization.

Modelling a business process consists of creating a conceptual
system which reflects the more relevant characteristics of the real
process under consideration. In [3], three different categories of
purposes for business process modelling are given: description, analysis,
and execution. The aim of our work is the analysis of processes. In [4]
three different types of analysis are presented: validation (the system
behaves as expected), verification (proof of correctness), performance
analysis (resource consumption, timing and delays, throughput, etc.)

In the recent years, a number of languages have been developed for
business process description, most of them adapted from the area of
computer science. Most authors agree that modelling techniques can be
divided in two: communication-based [5] and activity-based. Among
them, activity-based techniques are the most used in current business
process management (BPM) systems. Activity-based models describe a
process by set of activities and their relations. Activities are the main
components of a process and represent units of work. Petri Nets [4],
UML activity diagrams [6,7], Role Activity Diagrams (RAD) [3], or
Integrated DEFinition (IDEF) [8] are some of the languages used for
activity-based modelling. Among them, only Petri Nets allow for the
direct application of formal methods for process definition and analysis.

More recently, several XML languages have been developed to
model inter-organizational processes. Their main objective is the
modelling of loosely coupled business processes, executed by collabora-
tion of different BPM tools in a heterogeneous and distributed environ-
ment. Many of them use web services as communication middleware.
BPEL4WS, BPML, WSCI, XLANG and WSFL are some of these
languages [14].

None of these languages can be formally verified directly. Although
Petri nets and some other formalisms can be used for formal modelling
of business processes, none of them has been applied to the verification
of these XML languages. In this work we present VERBUS, a formal
system that can be used as the basis for the verification of some of these
languages. Business processes are defined in VERBUS by means of a
formal specification, which is analyzed by verification of its require-
ments. The formal system is based on transition systems. Model-
checking tools and refinement by transformation are the strategies of
VERBUS to accomplish verification and to get to a running system.

The structure of the article is organized as follows. First the
VERBUS formal model is introduced. Different techniques used in
VERBUS for process verification are later presented. Then some related
works and, finally, the conclusions and our intentions to future work are
exposed.

THE FORMAL MODEL
This section begins with an informal description of the model to

improve the understandability of the formal model.

Informal Description of the Model
The model is based on the concepts of activity–based modelling

defined in [4]. Among them, entity and activity are the most important
concepts in our model.

An entity represents a document, some data, or a material object
that is acted upon by the process. We represent entities by the set of their
relevant attributes, which are expressed by name–value pairs. The values
of the attributes of all the entities of a process define the state of that
process at a given moment. The process starts at an initial state and
evolves changing its state. A change in the value of any attribute causes
a change in the state of the process.

An activity is a unit of work of the process. In this model, each
activity is composed by two or more transitions. A transition models an
atomic change in the state of the process. Each transition is associated
to the beginning, completion or an intermediate result of an activity.
A transition is modelled by a condition-action pair. The condition is a
Boolean predicate about the value of the attributes. The action is a set
of assignment expressions that change the value of some attributes. If

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,
Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Innovations Through Information Technology 239

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

the condition is evaluated to a true logical value for the current state,
then its action can be executed, and so a new state is reached.

The execution of an activity is decomposed in a set of at least two
transitions. The first of them models the beginning of the activity. Its
condition can be viewed as the activity precondition (or requirements).
The second models its completion. Its action represents the changes in
the attributes as the result of the execution of the activity. In addition
to initial and end transitions, more transitions can be used to model
intermediate results in the execution of an activity.

The execution of an activity can also be non-deterministic. For a
given state, the condition of two or more transitions could evaluate to
true. In this case, one of them is non-deterministically selected. For
example, suppose that an activity that can end either normally or with
an error is modelled. Two different end transitions could be defined for
it, both with the same condition and different action. One of them could
represent the normal behaviour and the other the behaviour for the
occurrence of an error. At execution time, only one of them would be
selected.

The execution model presented in this work is inherently concur-
rent. At a given time, a set of activities is being executed concurrently
if their start transitions have been executed, but not their end transi-
tions. To impose the sequential execution of a group of activities,
control attributes can be used. For example, suppose that activity B can
be executed only after the completion of activity A. An attribute can
be used to mark whether activity A has been completed. The condition
of the initial transition of B might use this attribute to impose this
requirement.

Formal Definition of the Model
In the following paragraphs the concepts of attribute, state,

transition, path, process and functional transition are formally defined.
Let A be the finite set of attributes of a process. Each attribute has

a given value in the finite set V
a
. The set V is defined as �

Aa
aVV

∈

=
.

Definition 1 A state is defined as a mapping s:A→→→→→V such that a
 A, s(a) V

a

The state is an application that associates each attribute with its
value. Given a set of attributes A, the finite set of all the states is denoted
by S. The process evolves from one state to the next state by transitions.
A transition is a relation between the original state and a subsequent
state, directly reached from the original state (i.e. there are no inter-
mediate states between both states):

Definition 2 A transition is a pair (s
1
,s

2
) belonging to the product

SxS

The set of all the transitions of a given process is a subset T P(SxS),
where P denotes the power-set of a set. This is the definition of a binary
relation. Thus, the set T of all transitions can be represented as a binary
relation R on the domain S. For each pair of states s

1
,s

2
 S, (s

1
,s

2
) T is

equivalent to s
1
Rs

2
.

The concept of transition allows the designer to define the dynamic
behavior of a process P. Given a process in state s S and the set S’={s’
 S / sRs’}, “s’ S’ the process can evolve from the state s to the state
s’. And P must evolve to a state s’ S’ (i.e. whenever there are transitions
with origin in the actual state of P, P must eventually evolve towards
a destination state of some of the transitions). From a given state s, if
there is no state s’ S such that sRs’, then s is a final state of P. S

f
⊂S denotes

the subset of all the final states.

Definition 3 A path is defined as a sequence of states e = <s
0
,s

1
,…,s

n-1
> such that s

i
Rs

i+1
for all 0 ≤ i < n-1.

Given a path e = <s
0
,s

1
,…,s

n-1
>, the i-th state of e is denoted as ei.

The last state of e is denoted as last(e)= en-1.

Definition 4 Given a set of initial states S
0
, an execution is a path

e such that e0 S
0
 and final(e) S

f
.

According to the definition, an execution is a possible evolution of
a process, from an initial to a final state, among all the possible runs
(evolutions) conforming to the specification of the process. A process
P is defined as the set of all the possible executions conforming to its
specification:

Definition 5 Given a set of states S, a binary relation R in the
domain of S and a set of initial states S

0
, a process P is defined as the set

of all the possible executions.

The explicit definition of transitions is natural for small-sized
processes (reduced set of states, attributes and transitions). However, it
is not practical for realistic processes, which have a large set of states.
In VERBUS, an implicit representation of states and transitions is
proposed. States can be grouped in sets such that a certain property is
true for all of them. Consider a process with a group of states which share
in common the property document D has been reviewed. It is easier to
define the property than to enumerate all the states satisfying it.
Following this approach, transitions can be grouped in functional
transitions:

Definition 6 A functional transition is a function f : S’→S such that
S’⊆⊆⊆⊆⊆S and s S’sRf(s).

The functional transition f establishes a transition between each
state of its domain (S’) and a state of S. It is just a more compact notation
to represent multiple transitions between states. This function can be
defined by two predicates: a first predicate defining the function domain
(the condition); and a second predicate defining the equation of the
function (the action). Note that a state s can be in the domain of more
than one functional transition. This models the non-determinism of the
process.

The set of all the functional transitions that define a process is
denoted by F. Given the set F, it can be proved that there is a binary
relation R defining exactly the same transitions. So the proposed
implicit representation of transitions is equivalent to the explicit
representations of binary relations. The main points in introducing the
implicit definition of states are: to use a compact notation to describe
the processes; and to handle efficiently the complexity of specs in the
verification process.

∀
∈ ∈

∈

∈ ∈

∈
∈ ∈

∈

∈

∈ ∈

∀ ∈

Figure 1: Fragment of a VoD example process. Each entity is a grouping
of attributes. For reasons of space, only one activity is declared.

process VoD {
enttype Request {

 state: enum (init, received, reviewed, responded, confirmed,
 ready, cancelled);
 movie: abstract;
 quality: abstract;
 date: abstract;
 alternative: boolean;
 acceptable: boolean;
 accepted: boolean;
}
enttype NetworkResources {
 state: enum (no_reservation, provisional_reservation,
 confirmed_reservation);
}
entity req: Request;
entity network: NetworkResources;
...
activity NetworkNegotiation {
 state negot: enum (init, processing, finalised);
 transition begin {
 domain: {act.negot=init & req.state=reviewed &
req.acceptable
 & network.state=no_reservation}
 action: {act.negot=processing}
 }
 transition acceptable_end {
 domain: {act.negot=processing}
 action: {act.negot=finalised
 & network.state=provisional_reservation}
 }
 transition no_acceptable_end {
 domain: {act.negot=processing}
 action: {act.negot=finalised & network.state=no_reservation
 & !req.acceptable}
 }
}
…

240 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

A fragment of an example business process for a Video on Demand
service is presented in Fig.1. It is defined using a textual language very
closed to the formal definitions above. The language is described in [9].

VERIFICATION OF BUSINESS PROCESSES
When the modeller defines the business process, it is useful for him

to check that the defined process is formally correct. This is the main
goal of VERBUS. The modeller specifies, in addition to the process
definition, some properties that must be true for it. The system checks
whether these properties are true or false. If any property is false, the
system can give a counterexample. VERBUS can verify both safety and
liveness properties. In this section we explain how verifications can be
done in VERBUS.

It can be proven that the VERBUS formal model is equivalent to
a non-deterministical finite state machine (ND-FSM). So, many existing
tools can be used to perform the verification of a VERBUS process
specification, provided that an automatic mapping is defined from the
VERBUS language to its equivalent specification expressed in the tool’s
language.

To test the system we have developed two mapping tools for
VERBUS business process definitions. One of them maps it into a CLIPS
program. The other one maps it into a PROMELA program. To perform
the verification, the generated programs have to be executed in the
appropriate environments.

The CLIPS based verification is described in [9]. It has two main
problems: scalability and expressiveness. It has scalability problems
because it can’t deal with medium-sized process definitions, because of
the state explosion problem. It lacks also of expressiveness because it
can only verify simple properties. It isn’t expressive enough to define
some types of properties that involve temporal orderings of things. For
example, it doesn’t allow the modeller to say that if an affirmative
response is sent to the entity A, it must exist at least one path in which
sometime in the future the requested service will be prepared.The
PROMELA based verification provides a good solution to these prob-
lems, using algorithms successfully applied to other domains such as
digital circuits, communication protocols and software development. It
is based on model-checking algorithms and temporal logics [12]. Fig. 2
shows three simple example properties.

A Verification Tool Based on PROMELA Specifications
Spin is a well–known open source software model-checker that can

be used for the formal verification of distributed software systems,
developed at Bell Labs. Spin uses a high level language to specify system
descriptions, called PROMELA. Spin has been used to find design errors
in operating systems, switching systems, concurrent algorithms, etc. It
can be used to verify liveness and safety properties like deadlock
detection, invariants or code reachability. It can also be used as a LTL
(Linear Time Logics) model-checking system. PROMELA and Spin are
further described in [13].

We have developed a tool that automatically translates VERBUS
process definitions to equivalent PROMELA specifications. So each

process defined in VERBUS can be efficiently verified with Spin. The
tool was developed in C++. It parses the VERBUS specification and
generates the PROMELA specification from it. The parser was gener-
ated using the GNU tools Flex and Bison. Each element of the VERBUS
specification is mapped to PROMELA following these rules:

• Attributes: mapped as global variables. Boolean attributes are
represented as Boolean variable types. Enumerated attributes are
represented as byte, short or int variable types. A number is
assigned to each possible enumerated value of each attribute. A
constant is defined with the #define preprocessor directive to
represent this number with a word (the textual name assigned by
the workflow designer to this value). This makes the PROMELA
specification easier to read.

• Processes: represented as PROMELA process types. The init
process of PROMELA starts all these processes concurrently.

• Activities: no explicit implementation in the PROMELA speci
fication, because each functional transition is defined indepen
dently

• Functional transitions: included in a repetition statement (do).
In it, the domain of each functional transition is represented as
a conditional statement. All the statements are mutually exclu
sive: at a given moment, only one can be non–deterministically
selected from all the statements that evaluate to true. There is
also a default statement that ends the do loop when no domain
statement is true. The action of each functional transition is
mapped to a statement following its domain.

The correctness properties defined in the VERBUS specification
are also automatically mapped to the PROMELA specification and
verified with Spin:

• Invariants: properties that must be true for all the reachable states
of the process. To check invariants the method recommended in
[13] is followed. A monitor process type is defined and run in
parallel with the other processes. The content of this process
type is an assertion statement with the logic conjunction of all
the defined invariants. So if an invariant is not satisfied, Spin will
detect it and give the counterexample.

• Goal reachability: the modeller can establish a Boolean predicate
that must be true for all the final states of the process, called goal
predicate. If the process reaches a final state for which this
predicate is false, then the goal reachability property is not
satisfied. For example, this property can be used to detect dead-
locks and paths ending in incorrect states. In the PROMELA
specification this condition is mapped as an assertion, placed
after the do statement that represents the transitions.

• Functional transition reachability: when one or more functional
transitions can not be reached in any possible path of the process,
there is probably a design error. The code reachability proofs of
Spin can directly detect this.

• Temporal properties: the designer can check temporal proper
ties expressed with LTL logic or Spin never claims, specifying
them in the user interface.

RELATED WORK
Many modelling systems had been developed for workflow and

business processes, but few of them allow the modeller to formally verify
properties to check the correctness of the defined processes. From the
latter, almost all are based on Petri Nets.

Petri Nets is the formalism used in many commercial BPM systems
and research prototypes. In [4] the most relevant publications in this
field are cited, and the usage of Petri nets for workflow modelling is
explained and justified. It explains how definition and analysis of
business processes can be done with this formalism. Petri Nets is a
powerful tool for the definition of complex processes, and provides
suitable formal methods for correctness verification of processes. In [7]
formal semantics are added to UML activity diagrams to allow the
verification of business processes defined with such formalism.

Figure 2: Example properties to verify in the process presented in Figure
1.

invariant inv_1 {
 !req.state=responded |!req.acceptable
 | network.state= provisional_reservation
}
invariant inv_2 {
 !req.state=cancelled
 | !network.state=confirmed_reservation
}
goal goal_1 {
 req.state=cancelled
 | req.state=ready
}

��

Innovations Through Information Technology 241

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

CONCLUSIONS AND FUTURE WORK
VERBUS is a new and powerful environment for the verification

of business processes. It supports the verification of intra–organiza-
tional and inter–organizational business processes. It uses a formalism
based on transition systems, and is equivalent to FSMs. So a lot of tools
and theoretical results developed for these formalisms and their variants
can be applied to business processes. The VERBUS mission is to connect
high level business process definition languages to formal verification
frameworks. The designer would never define processes in VERBUS
directly: he would define them using other graphical languages. Then the
specification could be automatically transformed to a VERBUS speci-
fication. Its main advantages are:

• It is based on a very general formal model (FSMs). So, many
business process definition languages can be transformed to an
equivalent VERBUS specification.

• Its specifications can be automatically transformed to other
formal systems. So other verification tools can easily be used.

• The isolated specification of the requirements of each activity
makes easier their reutilization for other processes.

VERBUS specifications can be verified using different formalisms.
Particularly, we have developed tools that translate these specifications
to CLIPS and PROMELA programs. The PROMELA version is verified
using Spin. It is scalable, efficient, and can check more expressive
properties defined with LTL. To complete the VERBUS system, we are
developing an automatic translator from BPEL4WS process specifica-
tions to VERBUS specifications. BPEL4WS [15] is a business process
definition language that models inter-organizational processes based on
web services.

ACKNOWLEDGMENTS
This work is partially supported by the Spanish Science and

Technology Ministry, in the project TIC2003-07208 “Infoflex”.

REFERENCES
[1] Heitmeyer, C., Mandrioli, D., eds.: Formal Methods for Real-

Time Computing. Trends in Software. John Wiley Sons (1996)

[2] Clarke, E., Grumberg, O., Hiraishi, H., Jha, S., Long, D.,
McMillan, K., Ness, L.: Verification of the futurebus+ cache coherence
protocol. Formal Methods in System Design 6 (1995) 217–232

[3] Ould, M.A.: Business processes: modelling and analysis for
re–engineering and improvement. John Wiley & Sons (1995)

[4] Aalst, W.: The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers 8 (1998)
21–66

[5] Winograd, T., Flores, R.: Understanding Computers and
Cognition. Addison–Wesley (1987)

[6] Dumas, M., Hofstede, A.H.M.t.: UML Activity Diagrams as
a Workflow Specification Language. In: Proc. of the International
Conference on the Unified Modeling Language (UML), Toronto,
Canada, Springer Verlag (2001)

[7] Eshuis, R.: Semantics and Verification of UML Activity
Diagrams for Workflow Modelling. PhD thesis, University of Twente
(2002)

[8] Hanrahan, R.P.: The IDEF process modeling methodology.
Crosstalk–The Journal of Defence Software Engineering 8 (1995)

[9] Fisteus, J.A., Delgado, C., Marín, A.: Modelo formal para
la verificación de procesos de negocio: aplicación a un servicio de VoD.
Proceedings of the III Congreso Iberoamericano de Telemática,
Montevideo, Uruguay (2003)

[10] Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.:
Workflow Patterns. QUT Technical report , FIT-TR-2002-02,
Queensland University of Technology, Brisbane (2002) (Also see http:
//www.tm.tue.nl/it/research/patterns.).

[11] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata
Theory, Languages, and Computation. Addison–Wesley (1979)

[12] Clarke, E.M., Grumberg, O., Long, D.: Model Checking. In
Broy, M., ed.: Deductive Program Design. Volume 152 of NATO ASI
Series. Springer (1996) 305–349

[13] Holzmann, G.J.: The model checker spin. IEEE Transactions
on Software Engineering 23 (1997) 279–295

[14] Aissi, S., Malu, P., Srinivasan, K.: E-business process mod-
eling: the next big step. IEEE Computer 35 (2002) 55–62

[15] Andrews, T., Curbera, F., Dholakia, H., et al. Business Process
Execution Language for Web Services. Version 1.1 Specification.

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/verbus-formal-model-business-

process/32343

Related Content

Handling Imprecise Data in Geographic Databases
Cyril de Runz, Herman Akdagand Asma Zoghlami (2015). Encyclopedia of Information Science and

Technology, Third Edition (pp. 1785-1799).

www.irma-international.org/chapter/handling-imprecise-data-in-geographic-databases/112584

Researching Online Dating: Instant Messenger and Email in Consideration
Danielle Couchand Professor Pranee Liamputtong (2013). Advancing Research Methods with New

Technologies (pp. 266-284).

www.irma-international.org/chapter/researching-online-dating/75950

UNESCO Intangible Cultural Heritage Management on the Web
Maria Teresa Arteseand Isabella Gagliardi (2015). Encyclopedia of Information Science and Technology,

Third Edition (pp. 5334-5347).

www.irma-international.org/chapter/unesco-intangible-cultural-heritage-management-on-the-web/112982

Management and Cost Estimation of Security Projects
Yosra Miaoui, Boutheina A. Fessiand Noureddine Boudriga (2015). Encyclopedia of Information Science

and Technology, Third Edition (pp. 5114-5125).

www.irma-international.org/chapter/management-and-cost-estimation-of-security-projects/112960

New Media Interactive Design Visualization System Based on Artificial Intelligence Technology
Binbin Zhang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-14).

www.irma-international.org/article/new-media-interactive-design-visualization-system-based-on-artificial-intelligence-

technology/326053

http://www.igi-global.com/proceeding-paper/verbus-formal-model-business-process/32343
http://www.igi-global.com/proceeding-paper/verbus-formal-model-business-process/32343
http://www.irma-international.org/chapter/handling-imprecise-data-in-geographic-databases/112584
http://www.irma-international.org/chapter/researching-online-dating/75950
http://www.irma-international.org/chapter/unesco-intangible-cultural-heritage-management-on-the-web/112982
http://www.irma-international.org/chapter/management-and-cost-estimation-of-security-projects/112960
http://www.irma-international.org/article/new-media-interactive-design-visualization-system-based-on-artificial-intelligence-technology/326053
http://www.irma-international.org/article/new-media-interactive-design-visualization-system-based-on-artificial-intelligence-technology/326053

