I DEA GROUP PUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITP5042

Extending UML for Database Design

Luiz Camolesi Jr.
Methodist University of Piracicaba- UNIMEP, Rod.do Acucar 156, Piracicaba - SP - Brazil, E-mail: lcamoles@unimep.br

Edson Luiz Avanzi
Methodist University of Piracicaba- UNIMEP, Rod.do Aclcar 156, Piracicaba- SP - Brazil, E-mail: eavanzi @dglnet.com.br

ABSTRACT

The database design is made through some contexts from the conceptual
level to the physical level. Nowadays many tools are available to assist
the designers with the projects but UML (Unified Modeling Language)
has become a standard language to describe the complete development
of relational and object relational databases. However, some important
aspects about the performance of database systems, on the physical
level, are not enough expressed in UML. In this article we approach
aspects such as indexing, file organization and the database server-
computer configuration to propose an extension of the UML for the
database physical design.

1. INTRODUCTION

With the exponential growth of information in several areas of
business and knowledge, databases are bigger and more complex causing
the enterprises to search for an adequate planning from a database
engineering. The companies wish have many data but they want the
information available within the market time. In addition to ERP
(Enterprise Resources Planning), BIS (Business Intelligence System),
MIS (Management Information System) and Data Warehouse systems
that require a lot available space in disks, Internet brought new data types
which have been stored on database, too. Then, the physical design to
database systems needs to include aspects of performance to access the
data, mechanisms for representing the file indexing, the table organi-
zations and all the environment such as data storage technologies,
database and application servers. The development of a good project of
database system is important so that the data may be stored and
recovered in an adequate way.

The project of a database system [8] is made through some
contexts, which include from the highest level (conceptual) which
represent the vision of the users about the data to the lowest level
(physical) which represents how data will be stored and recovered on
database.

Nowadays many technologies are available to assist the designers
and architects to project the database and one of them is the UML [9]
[11]. The UML has emerged as an effective modeling tool for database
modeling and database design process [17]. It can facilitate the integra-
tion of database models with the rest of a system design [13].

This article proposes the database physical project in relational
database using the UML. The rest of this paper is organized as follows.
In section 2 we outline the database models. In section 3 we identify the
deficiencies that can be overcome by using UML extension mechanisms.
In section 4 and 5 we illustrate one possible technique for modeling a
relational database in the UML. Some experience with relational
database modeling as well as some familiarity with the UML is assumed.

2. DATABASE MODELS

In the conceptual project occurs the description about the contents
on database but not of the structures of data. It is necessary to interview
the potential users of system to describe the information relevance and
data purposes and constraints. The result is the conceptual model
presented with the modeling of the data such as ER (Entity-Relation-
ship) model [2] [14].

The ER model consists of a collection of entities which are related
by the ER diagram. The ER diagram do not consider the physical
structures of databases assuming that this scheme will be used upon a

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour.

model, as relational model which uses several two-dimensional tables to
represent both data and the relationships among these data. This model
has been selected for the implementation of many a database.

Although the IDEF1X [3] has become a standard for data modeling
in relational databases it is mostly used for database logical design but
it is not the best choice for non-relational system implementations.

In this way, the objective in the logical project is to translate the
conceptual scheme to the database describing the structures of data in
the relational scheme. Besides the CASE tools which were and continue
being used by some designers to develop the logical model we can also
count on the UML [15] [16].

In the physical project the logical model is converted in to
structures of storage and the access paths to the files are detailed. The
objective is to reach the performance goals.

The UML has elements that represent both conceptual and logical
aspects of the databases [1] [12]. It represents a relationship as a
dependence of any type between two tables using the stereotyped
association and including a set of both primary and foreign keys. It can
represent overall physical structures of the database and use a stereo-
typed component to represent a physical database. But it doesn't detail
the file indexing, type of index, table organizations and block sizes that
are factors important to improve the performance of the database.

3. DATABASE PHYSICAL PROJECT

The database physical project involves the study and the knowledge
of the physical features of the database to reach the strategies for
accessing the data efficiently. These include the storage structures, index
structures for files that enhance the search for and retrieval of records
improving the performance and the form of file organization.

Most of the DBMS has flexibility for modeling of the elements
offering some options as follows.

3.1 Indexing

During the physical project the best strategies must be chosen get
fast access to recordsin afile on disk using an index structure [2] [7] [14].
The indexes speed up the recovery of records based in some conditions
used for the search and they can use alternative paths to access the
records without changing there of place. The most used types of indexes
are based on ordered files and tree data structures.

. Ordered indexes

The most common types of ordered indexes are the primary,
clustering and the secondary indexes.

The primary index is an index whose search key defines the
sequential order of the file on disk and the search usually occurs using
the primary key. Primary indexes can be dense or sparse. While a dense
index has an index for every search key in the data file whereas the sparse
index has index entries for only some of the search key. The clustering
indexes look like the primary indexes but they are used when numerous
records have the same value for the ordering field.

In the secondary index the records are not stored sequentially in the
same as that of the primary index, being necessary to contain pointers
to all the records. Although this improves the performance for the
queries on non-primary keys it implies in performance degradation when
some alteration of the database will be necessary.

Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

674 2004 IRMA International Conference

. Tree data structures

As the file grows the performance of the ordered indexes goes
degrading. This problem can be partially solved by periodic reorganiza-
tion of entire file but it is not a good idea because during the reorgani-
zation no user can access the system or, that is, the system will need be
unavailable. The alternatives for this situation are the tree data struc-
tures. The basic types of tree data structures are the B*-Tree and B-Tree.

The B*-Tree is an index structure in which every path from the root
of the tree to the leaf of the tree is of the same length seeming a balanced
tree.

The B-Tree is similar to B*-Tree but allows search key values to
appear only once eliminating redundant storage of search keys. Its
number of nodes is reduced with the search key value being found ahead
of the B*-Tree. On the other hand, only a small piece of the search key
values are found early and its implementation is normally more com-
plicated than B*-Tree.

3.2 File organization

The file organization [2] [7] [14] implies in the organization of the
data of the file into records, blocks, and access structures including the
way records and blocks are physically placed on the disk. The designer
must choose a file organization that increases the systems efficiency
upon records retrieval.

The main ways to organize the records in files are: unordered,
ordered and hashed.

. Unordered (heap files)

This is the simplest and basic type of file organization and is also
known as heap files. The records are placed anywhere where there is
space, usually they are inserted to the end of file. There is no ordering
of records. Typically, the deleting of rows create gaps in file which result
in fragmentation, decrement of space on disk and decreasing of perfor-
mance.

. Ordered (sequentia files)

The sequential file organization or ordered records allows that
records be stored in a sorted order based on the same search key of each
record where this key does not need to necessarily be a primary key. In
this organization type the file must be periodically reorganized to keep
the sequential order on the disk.

. Hashed

In the hashed file organization it is used a hash function to
determine the block in the file where the record can be stored. In this
way the access to the block will be immediate without the access
necessity to an index structure.

3.3 Data blocks

The different files that exist on a database are partitioned into
storage units, known as data blocks [2] [7] [14] and may contain several
data. In the physical storage the data are organized in terms of data
blocks, extents and segments. The smallest level of granularity of
storage is a data block which is of a fixed length and typicaly it is a
multiple of the operating system block size.

The form of physical data organization determines the set of data
that a block contains. The correct choice of the block size is important
when reading and writing rows on the tables. If there are more than one
server, the data blocks are defined in each server. As a baseline for
performance, we also propose the definition of the block size in the UML
extensions.

4. EXTENDING UML FOR DATABASE PHYSICAL
DESIGN

This article proposes the Table 1 below for the extension of the
database physical design using the UML. An advantage of using it is that
it reduces the complexity in large database design [6]. We know that
more indexes [2] [7] exist, therefore, this table is not complete and other
indexes can be added. Some alternatives to use the Table 1 are:

Table 1. Table for stereotypes and icons

Stereotype Icon
Primary Dense <<PD>>
Primary Sparse <<PS>>
% Clustering <<CS>>
E Secondary <<SC>>
B-Tree <<BT>>
B*-Tree <<BT">>
5 Unordered <<heap>> [El
,_1—: g Ordered <<sequential>> E
8| Heshed <<hash>> HH
. Only an icon to indicate which file organization it is;
. Default icon in the UML and of the stereotype to indicate which
file organization it is;
. Only the default icon in the UML and to assume that the file

organization is the DBMS default organization.

The Figure 1a shows an example of a Class in which we can see in
details the file organization, the organization key and the indexing. In
the class name there appear a stereotype and an icon that can be used
to represent both indexes and file organization by using the UML. The
icon in the class name indicates that the file organization is sequential,
ordered by the TITLE key. Some file organizations do not need a key
specification (as heap) whereas in others the specification is required.
Then, in the database project the designers must be careful with the
specifications of the keys (both simple and composite), when necessary.
The attributes AUTHOR and ISBN are identified as indexes B*-Tree
(BT*) which are being indexed by the ordered index IX_AUTHOR() and
IX_ISBN().

Figure la. An example of a Class

<<stereotype>> E
BOOK

<<BT'>> AUTHOR:VARCHAR2

<<KY>> TITLE: VARCHAR2
SUBJECT : VARCHAR2

<<BT*">> ISBN:NUMBER

<<PK>> PK_ISBN()

<<IX>> IX_AUTHOR()

<<IX>> IX_ISBN()

Figure 1b. An example of Component diagram

<<Database>>
Authors
Books

Subjects

SERVER 1 SERVER 2
1111112 Block Size 1111111 Block Size
=32KB =64KB

Cache = 1000000MB Cache = 2000000MB

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Figure 2. An example of modeling

I:g ==sequential==

CRDEER_ITEMS ID: HUMEER
OFDEFED_QUANTITY : NUMEEER
COMPOMENT _CODE : VARCHAR2
==K¥== UHIT_CODE : VARCHARZ

ORDER CORDEER_ITEMS

HEADEF,_ID : NUMEER
CREATION DATE : DATE
VENDORS_ID : NUMBER 0. ©

A, CUSTOMER,_ID : NUMEER
A, FEQUEST_ID : HUMEER

«<K¥== DATE_ORDERED : DATE o.x

ORDER, CATEGORY : VARCHAR2

««PK=> PE_ORDER_ITEMS_ID()
=<FK== FE_HEADER_ID()
«2I¥=> 1¥_COMPONENT_CODE()

«=<PE»=
==PE=>
«<PE>=

TE_HEADER,_ID()
PE_SALESREP_ITY)
PE_CUSTOMEE,_IT()

«<Fi== FE_CUSTOMER ID() achashee ﬁ

<=<FKs» FK_VENDOES_ID()

«=lf== IH CUSTOMER ID() CUSTOMERS

=eli== X REQUEST_ID() ! CUSTOMEF,_ID : NUMEEE.
F=N CUSTOMER_WAME : VARCHARZ

EMAIL_ADDRESS : VARCHARZ
«<KY=» PRICE_LIST_ID : NUMEER.
VENDORS I:EI =<PK== PE_CUSTOMER_ID()

«slEex

[X_CUSTOMEE_HNAME()

VENDOERS_ID : WUMEER
HAME : VARCHAR2 1
EMAIL_ADDEESS : VARCHARZ

==BT+=»

==PE==
ELires]

PE_SALESREP_ID()
IZ_WAME()

The Figure 1b shows part of a Component diagram in which is
described the block size. Each server can have a different block size
therefore, the block size is defined in each server for best performance
when processing. This diagram also shows cache value which is another
significant parameter for the system performance.

For the class with indexing the stereotype <<IX>> identifies a name
(or method) of the used indexing. Many an indexing may exist for a class.
The stereotype <<PK>> is obligatory in all classes which is used to
identify the unique default indexing of the primary key. The stereotype
<<IX>> identifies the key which is used in the organization of the class.
There must be only one organization key which can be simple or
composite by several attributes.

5. MODELING EXAMPLE

The Figure 2 illustrates a part of the table collection used for the
management of order entry in some information systems. The tables
Order, Order_Items, Vendors and Customers can be specified according
to Table 1 facilitating the implementation on the physical level.
Moreover, the UML will thus detail the structures of storage and access
paths to the files with every information about the overall project being
registered.

In Figure 2, the ORDER table has an icon in the class name which
indicates that the file organization is sequential and it is ordered by the
DATE_ORDERED key. The CUSTOMER_ID and REQUEST_ID have
icons indicating that they are indexes B*-Tree and they are indexed by
IX_CUSTOMER_ID and IX_REQUEST_ID, respectively, according to
stereotype <<IX>>. Besides, there are primary keys and foreign keys
indicated by stereotypes <<PK>> and <<FK>>. The ORDER_ITEMS
table is a sequential file organization indicated by the stereotype
<<seguential>> and it is ordered by the UNIT_CODE key. The clustering
indexing is indicated by the icon in the COMPONENT_CODE which is
indexed by the IX_COMPONENT_CODE, according to stereotype
<<IX>>. The clustering indexing was chosen in order that the compo-
nents can be grouped by items. The VENDORS table is a heap file
organization indicated by an icon without having the organization key.
The CUSTOMERS table is a hash file organization. The organization
key is the PRICE_LIST_ID and the CUSTOMER_NAME is an index
which is indexed by IX_CUSTOMER_NAME index.

6. CONCLUSION

Nowadays the information systems can be distributed for many
places and there are several data types and the database are becoming
bigger and bigger. The Unified Modeling Language is an interesting and
optimal tool for modeling and database design [12]. The physical project
is not usually accomplished causing problems of performance in overall

Innovations Through Information Technology 675

system. This paper proposes a set of extensions using the UML for
database physical design so that the designers have more elements to
architect the systems and represent pieces of important information to
improve the performance of the database system [4]. These contribu-
tions are more relevant when applied to large databases such as multi-
media databases because in these case the performance is more signifi-
cant and the design is more complex [5].

This work tries to keep the UML conception bases and the
simplicity and legibility of the extended diagrams. The UML 2.0 [10]
brings significant improvements and the profile package upon which this
work can be continued.

7. REFERENCES

[1] BJORKANDER, Morgan; KOBRYN, Cris. “Architecting Sys-
tems with UML 2.0”, IEEE Computer Society, July/August 2003.

[2] ELMASRI, Ramez; NAVATHE, Shamkant B. “Fundamentals
of Database Systems, 3rd ed., Addison-Wesley, 2000.

[3] IEEE Computer Society. “IEEE Standard for Conceptual
Modeling Language Syntax and Semantics for IDEF1X97 (IDEF ob-
ject)”, IEEE Std 1320.2-1998, December 2003.

[4] KIVISTO, Kari. “Roles of Developers as Part of a Software
Process Model”, In Proceedings of the 32nd Hawaii International
Conference on System Sciences — 1999.

[5] MARTIN, Grant. “UML for Embedded Systems Specification
and Design: Motivation and Overview”, In Proceedings of the 2002
Design, Automation and Test in Europe Conference and Exhibition
(DATE’2002), |IEEE Computer Society.

[6] MOK, Wai Yin; PAPER, David P. “On Transformations from
UML Models to Object-Relational Databases’, In Proceedings of the
34th Hawaii International Conference on System Sciences — 2001.

[7] MOLINA, Hector Garcia; ULLMAN, Jeffrey D., WIDOM,
Jennifer. “Database System Implementation”, Prentice Hall, 2000.

[8] MULLER, Robert J. “Database Design for Smarties”, Morgan
Kaufman, 1999.

[9] NAIBURG, Eric J.; MAKSIMCHUK, Robert A.. “UML for
database design”, 1st edition, Addison-Wesley Pub Co, 2001.

[10] OMG. “UML 2.0 Infrastructure Final Adopted Specification”,
OMG document ptc/03-09-15, Object Management Group, 2003.

[11] OMG. “UML 2.0 Superstructure Final Adopted Specifica-
tion”, OMG document ptc/03-08-02, Object Management Group, 2003.

[12] Rational Software. “The UML and Data Modeling”, Rational
Software Corporation, http://www.rational.com/media/whitepapers/
Tp180.PDF, November, 2003.

[13] SELONEM, Petri; KOSKIMIES, Kai; SAKKINEN, Markku.
“How to Make Apples from oranges in UML", In Proceedings of the
32nd Hawaii International Conference on System Sciences - 2001.

[14] SILBERSCHATZ, Abraham; KORTH, Henry F.,
SUDARSHAN, S.. “Database System Concepts’, 4th ed., McGraw Hill,
2002.

[15] SPARKS, Geoffrey. “Database Modelling in UML”, In Meth-
ods & Tools e-newsletter. http://www.martinig.ch/mt/index.html

[16] TERRASSE, Marie-Noélle; SAVONNET, Marinette; BECKER,
George. “A UML-based Metamodeling Architecture for Database De-
sign”, In Proceedings of the |IEEE International Database Engineering
and Applications Symposium (IDEAS 2001).

[17] WHITE, Stephanie; CANTOR, Murray; FRIEDENTHAL,
Sanford; KOBRYN, Cris; PURVES, Byron. “Panel: Extending UML
from Software to Systems Engineering”, In Proceedings of the 10th
IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems (ECBS'2003).

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

0 more pages are available in the full version of this document, which may be
purchased using the "Add to Cart" button on the publisher's webpage:
www.igi-global.com/proceeding-paper/extending-uml-database-design/32452

Related Content

In-Service Teachers' Use of ICT for the Promotion of Collaborative Professional Learning
Ana Garcia-Valcéarceland Juanjo Mena (2018). Global Implications of Emerging Technology Trends (pp.
130-144).
www.irma-international.org/chapter/in-service-teachers-use-of-ict-for-the-promotion-of-collaborative-professional-
learning/195826

Overview of Dooyeweerd's Philosophy
Andrew Basden (2008). Philosophical Frameworks for Understanding Information Systems (pp. 32-61).
www.irma-international.org/chapter/overview-dooyeweerd-philosophy/28080

Factors Impacting Defect Density in Software Development Projects

Niharika Dayyala, Kent A. Walstrom, Kallol K. Bagchiand Godwin Udo (2022). International Journal of
Information Technologies and Systems Approach (pp. 1-23).
www.irma-international.org/article/factors-impacting-defect-density-in-software-development-projects/304813

Do We Mean Information Systems or Systems of Information?
Frank Stowell (2008). International Journal of Information Technologies and Systems Approach (pp. 25-36).

www.irma-international.org/article/mean-information-systems-systems-information/2531

The Choice of Qualitative Methods in IS Research
Eileen M. Trauth (2001). Qualitative Research in IS: Issues and Trends (pp. 1-19).

www.irma-international.org/chapter/choice-qualitative-methods-research/28257

http://www.igi-global.com/proceeding-paper/extending-uml-database-design/32452
http://www.irma-international.org/chapter/in-service-teachers-use-of-ict-for-the-promotion-of-collaborative-professional-learning/195826
http://www.irma-international.org/chapter/in-service-teachers-use-of-ict-for-the-promotion-of-collaborative-professional-learning/195826
http://www.irma-international.org/chapter/overview-dooyeweerd-philosophy/28080
http://www.irma-international.org/article/factors-impacting-defect-density-in-software-development-projects/304813
http://www.irma-international.org/article/mean-information-systems-systems-information/2531
http://www.irma-international.org/chapter/choice-qualitative-methods-research/28257

