
686 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Using XML for Simple Hierarchical
Communication between Agents

Paul Darbyshire
School of Information Systems, Victoria University, P.O. Box 14428, Melbourne City MC, Victoria 8001, Australia, Phone: +61 3 9588-

4393, email: Paul.Darbyshire@vu.edu.au

ABSTRACT
The importance of the role of communication between the agents has
also been highlighted by many researchers, particularly for multi-agent
systems and for distributed communicating agents. But the form of agent
communication often remains a mystery. Agent communication
languages and standards are being developed, however the dust hasn’t
really settled yet, and many implementations use ad-hoc techniques.
XML provides an excellent form for agent communication by facilitating
the construction of hierarchical message structures. Many of the
practicalities for implementation of message recognition can be
overcome by the utilization of existing libraries for XML parsing. A
message system using an XML-type syntax is more extensible and
adaptable for use in a changing environment. This paper discusses the
use of XML for the construction of agent-based messages, and presents
a simple approach for the deconstruction of messages by receiving
agents.

INTRODUCTION
The agent-based paradigm promises to be the next evolutionary

step in software design, especially for distributed applications. However,
the success or otherwise of these agent-based systems will largely rely
on the inter-agent communication systems utilized. The whole ap-
proach of the paradigm is small persistent software units working
together to solve a problem and fundamental to cooperation between
agents is the ability to communicate effectively. In many of the
descriptions of agent-based applications, the communication is implied
but not detailed directly. Those papers dealing extensively with the
communication aspects concentrate on the semantic structure of the
messages. But the question remains, what of the structure of the actual
message itself?

There are a number of standards describing message structure for
communication between agents, for example, KQML, ACL and more
recently FIPA ACL. While these standards are well advanced, the
specifications stop short at defining a structure for the actual message
payload. The message payload is that part of the message which is
actually delivered to the receiving agent for subsequent action (depicted
in Figure 1). The structure of the payload is important for a number of
reasons: the receiving agent must de-construct the message-payload to
derive meaning, hence there are practical considerations from the
programming perspective; the complexity of the message payload will
dictate to some degree the flexibility of the agents in relation to changes
in the payload structure; a hierarchically structured payload will allow
for extensibility of the messaging system without requiring changes to
existing receiving agents.

Using an XML syntactical structure we can send the message
payload in an XML hierarchical format, which then affords us a number

or practical advantages, including easier message deconstruction and
extensibility of the messaging system. This paper discusses some of the
practical aspects of message payload deconstruction and demonstrates
some of the advantages of structuring the payloads using XML. In the
following sections, some background information is given on agents, and
agent communication languages, followed by the construction of agent
messages. The practical application of XML for structuring these
messages, and the subsequent use of the XML Document Object Model
for the deconstruction is then detailed. Finally, details of further
research and some conclusions are presented.

BACKGROUND
Agent technology emerged from the field of AI research, so the

term ‘Intelligent Agent’ is often used. However, agents need not be
intelligent, and in fact most tasks do not warrant the use of ‘smart
agents’ (Nwana, 1996). Other adjectives often used with agents are,
interface, autonomous, mobile, Internet, information and reactive. The
term ‘agent’ can be thought of as an umbrella term under which many
software applications may fall, but is in danger of becoming a noise term
due to over use (Wooldridge & Jennings, 1995). Many agents are
currently characterized by descriptive terms that accompany them, for
example intelligent, smart, autonomous etc…

What makes agents different from standard software is the char-
acteristics that agents must possess in order to be classified as agents.
Nwana (Nwana, 1996) classifies agents according to primary attributes
which agents should exhibit, such as cooperation, learning and au-
tonomy. Indeed, by their very nature, cooperation is one of the primary
characteristics which an agent must possess. Genesereth (Genesereth &
Fikes, 1992; Labrou, Finin, & Peng, 1999), actually equates ‘agency’,
with the ability to cooperate and exchange data. But while this may be
a bit extreme, the nature of agents, being small autonomous software
units for specific tasks, means they must cooperate with other agents
to perform larger tasks. It is the practical form of this cooperation which
has created a landscape of Agent Communication Languages (ACL’s).

ACL’s had their root in the Knowledge Sharing Effort (KSE)
initiated by DARPA (Neches et al., 1991). The core concept of the KSE
was that knowledge sharing required communication which in turn meant
that a common language was required. The KSE focused on defining a
language and proposed the Knowledge Interchange Format, based on a
predicate calculus. At this time agents weren’t considered when design-
ing the language, but obviously the concepts were directly translatable
to agents. Prior to this, each project would implement their own form
of ACL (Singh, 1998).

The Knowledge Query Language Management (KQML) project was
the first significant inter-project ACL (Singh, 1998) by the KSE in the
late 1980’s. The KQML language consists of 3 layers: the message layer;
the communication layer; the content layer (DARPA, 1993; Labrou et
al., 1999). The content layer provides for the actual message content,
or the payload to be delivered to the receiving agent. KQML can carry
payloads in any representation language, including strings and binary
format, but every KQML implementation ignores the content layer
(Labrou et al., 1999), and leaves the payload format up the implement-
ing application.

An agent communication language simply called ACL was a variant
on KQML, and actually specified or assumed KIF as the payload

Figure 1 message payload

 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

�������

IDEA GROUP PUBLISHING

This conference paper appears in the book, Innovations Through Information Technology, edited by Mehdi Khosrow-Pour. Copyright © 2004,

Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

Innovations Through Information Technology 687

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

language. However, the latest emerging standards for agent communi-
cation are from the Foundation for Intelligent Physical Agents (FIPA),
with FIPA ACL (FIPA, 2002). FIPA ACL does provide a comprehensive
message specification language, and also provides the specification in
an XML format (FIPA, 2003). This XML specification is in the form
of a Document Type Definition, but again, like KQML, stops short in
any specification for the message payload.

In May 2000, the Internet Engineering Task Force (ITEF) defined
a Simple Commerce Messaging Protocol (SCMP) as an agent language
for electronic commerce applications using the Internet (Arnold &
Eaton, 2000). While this document does give an example of a message
payload using an XML structured message, it was clearly stated that,
“The SCMP protocol doesn’t specify payload definitions or how trading
partners are expected to process the payload, beyond basic functions
related to processing SCMP headers”. The objective was to allow trading
partner’s flexibility in implementing a standard commerce message
format or some other non-standard payload format.

Pragmatically it’s difficult to provide a specification for message
payload. There are many applications, both agent-based and traditional
that may need to exchange all manner of data. However, the vast
majority of communication between agents will take the form of simple
messages that could be exchanged using a simple format. The XML
specifications (Quin, 2003) provide for such a format. XML is almost
universally becoming a standard for data exchange between applications
and the Application Programming Interfaces (API’s) for processing
XML documents are well advanced. In particular, Java provides standard
classes for dealing with XML documents, and these could readily be used
by programmers to provide a practical and extensible message payload
format between agents.

TYPICAL MESSAGE PAYLOAD CONSTRUCTION
Given that the message payload format is usually left to the agent

developers, it will depend heavily on the application and may include the
transmission of binary data. However most applications including e-
business applications can normally transmit message in the form of a
simple string. The complexity of the string depends on the data being
transmitted, for example if each data item is no more than a single word
or number, then the items within the string can be simply separated by
spaces, eg:

“ SKU 167843T1 SIZE 12 STORE 8”

 If a data item contains more than one sequence then the string will
be delimited by a special character, such as a comma or a colon, eg:

“NAME,Paul James,CREDIT LIMIT,5000,ADDRESS,11 City
Road”

However, more often than not, the data items appear without any
preceding identifiers such as

“167843T1 12 8” or “Paul James,5000,11 City Road”

In such a situation, both the sending and receiving agents must be
intimately aware of the structure of the message payload. During the
deconstruction of the message, the receiving agent must parse the string
into its various tokens, and assume the tokens are in the correct order.
Continual error checking on the tokens as the message is parsed is the
only way to check against an invalid message. The received tokens are
checked against the agent’s beliefs of the structure and makeup of the
message, and any deviation from this is marked as an error. This leaves
little room for extensibility of the message format without altering the
beliefs of the receiving agents.

If we wish to add extra components to the message for some agents,
we could append this to the end of the message. Depending on the
message parsing implemented in all receiving agents, this may or may
not require modification. In some cases, it may not be prudent to append
the data to the message, but rather embed it within the message, thus
changing the structure. This would require all agents receiving such

messages to be aware of the new structure and deconstruct the messages
accordingly.

The emergence of XML as dominant standard for data transfer
provides us with an opportunity to utilize standardized XML API’s for
processing message payloads when structured using XML. This in turn
will provide us standardized routines for deconstructing the message, and
a message format that is essentially extensible in nature.

USING XML FOR MESSAGE PAYLOAD
CONSTRUCTION

XML is good at representing information that is extensible and
hierarchical in nature. In most cases the messages in agent-based
systems, including web-based eBusiness applications can be represented
in a hierarchical structure. In the example given previously, we can
represent the customer information in an XML format as shown in
Listing 1.

Listing 1 XML example message

<CustomerRequest>
<CustomerName>Paul James</CustomerName>
<CreditLimit>5000</CreditLimit>
<Address>

<Street>11 City Road</Street>
</Address>

</CustomerRequest>

The advantage of using XML for message structuring lies in the use
of the XML Document Object Model (DOM), for retrieving the data in
the message deconstruction. The Document Object Model is an
Application Programming Interface for valid HTML and well-formed
XML documents and is the foundation of XML. XML documents have
a hierarchy of informational units called nodes and the DOM is a way
of describing those nodes and the relationships between them. For
instance, when processing an XML document, the document is read
through a parser that analyses the structure of the document, and from
there a representation of the document can be constructed in memory.
As an XML document is hierarchical in nature beginning with the root
element, the representation of the document in memory is also hierar-
chical, represented as a tree structure. Once we have a representation
in memory of the XML document, it can be manipulated under program
control. Although we use the term document here, the XML can be in
the form of string passed to an agent as the payload of a message.

In a survey of 58 commercial and academic agent construction
tools, the Java language is used in 31 of these tools (Odell, 2003). Java
is becoming the language of choice for the constructing of agents due to
the close association between the Web, Java and agent development.
Agent technology is an offshoot from AI research, but its rise in
popularity has coincided with that of the Web, as the Web offers an
almost perfect environment for agent development. Java development
is also closely related to Web development and Java includes many
Applications Programming Interfaces for network programming and
Web interfacing. Another set API’s included with Java are those for
parsing XML documents and interfacing to the DOM as specified by the
Document Object Model Level 3 Core from the W3C (Le Hors et al.,
2003) .

Using the DocumentBuilderFactory and DocumentBuilder classes
we can very simply parse an agent message payload which is constructed

Figure 2 Parsing a message into a DOM

688 2004 IRMA International Conference

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

using well-formed XML and produce a DOM internal structure in a few
lines. This is depicted in Figure 2. The actual Java code snippet to achieve
this is shown in Listing 2. As can be seen, from a practical perspective,
the code to parse an XML message and build the DOM is quite small. If
multi-agent systems that utilize communication to achieve cooperation
are to be commonplace, then we need to be able to make use of such
standards to cheaply and efficiently implement all communication
aspects.

By utilizing the existing XML application programming interfaces
in Java, the coding effort is minimal and results in a very practical
structure for deconstructing the message. As indicated in Figure 2, the
DOM is a hierarchical tree structure beginning with the root node of the
XML message (the opening tag of the message). In the XML message
shown in Listing 1, the opening tag would be <CustomerRequest>. An
abstraction of the resultant DOM obtained by parsing the message in
Listing 1 is shown in Figure 3. The DOM in reality is slightly more
complex with the separation of the XML tag information and actual
element content into separate sub-nodes, but Figure 3 closely represents
the structure of the DOM.

With the document object model created, the task of deconstructing
has already been partially completed, a complete understanding of the
message is then simply a matter of traversing the structure looking for
the required information. The Java application programming interfaces
include methods to traverse and update the document object model again
simplifying the coding effort required by the programmer.

Extensibility of Messages
With the document object model representing the parsed message,

to retrieve elements of the message, the code can ‘drill down’ the DOM
looking for the elements it expects. Thus while the agent still needs a
knowledge the elements of the message it expects to find, the order and
placements of these elements in the message payload is no longer a

primary concern. The document object model is what the agent will
interrogate to derive meaning from the message.

The message payload can be substantially modified without affect-
ing the receiving agents. For example, we may need to modify the
content of the message in Listing 1 to add further address information
and unrelated contact information for a newly developed agent which
requires this extra information. By using XML syntax, Listing 1 could
be modified which would result in the parsed document object model
shown in Figure 4. Such an expanded document model would not affect
existing agents, as by drilling down from the root of the DOM, the
information they require is still there in the same format. Yet a new agent
will also find the extra information added to the message. The placement
of the tags and element data within the message payload is of no
consequence to the receiving agents provided the XML message is well-
formed.

Such a system is far more extensible than a message constructed
using a string. In such a case, expansion of the message is error prone
and dependent on the parsing methods used by these agents.

Validat ion
Another aspect of agent messaging is the validation of the structure

of the message payload itself. Each token in a string based payload is
validated against the type of data that is expected at that particular point
in the token sequence. Thus the code of the parser is highly structured
towards the expected sequence. By using XML for the message payload,
as we have seen, the order of the XML tags in the input message is no
longer important. The parsing routines implemented by the
documentBuilder class ensure the XML is well formed, otherwise the
document object model would not be constructed and an error would
result. Thus the placement of the code in Listing 2 within a Java try …
catch statement.

If the XML is well formed and the document object model is built,
there is still no guarantee that the DOM contains all the required tags
for the receiving agent. In this case the document can be validated by
the agent as it drills down the DOM looking for the nodes and data it
requires, much as an agent deconstructing a string payload might do.
However, XML provides a unique method for automatic validation with
the use of Document Type Definitions (DTD’s) or via an XML Schema.
Built into the Java API’s for processing the XML message payload, is
the ability to apply a DTD to the message to automatically validate the
payload. Listing 3 contains the DTD required to validate the XML
message payload of Listing 1.

Listing 3 DTD for CustomerRequest message

<!ELEMENT CustomerRequest (CustomerName, CreditLimit, Address)>
<!ELEMENT Address(Street)
<!ELEMENT CustomerName (#PCDATA)>
<!ELEMENT CreditLimit (#PCDATA)>
<!ELEMENT Street (#PCDATA)>

The DTD can be included in either the XML message payload itself,
or externally in a document supplied to the Java API at parsing. There
is very little change in the Java code in Listing 2 to perform DTD
validation. With this validation in place, once the message payload is
parsed then the document object model not only represents well-formed
XML, but also XML conforming to the DTD. As a consequence, the
agent can be sure all required tags and elements are present. This then
relieves the programmer from further error checking code. If con-
structed appropriately, then earlier DTD’s need not be incompatible
with later DTD’s representing an expanded form of the message (as in
Figure 4). Thus extensibility of the message systems remains unaffected.

CONCLUSIONS
If multi-agent systems are to become widely accepted as a paradigm

for large-scale applications, or for networks of cooperating applications
over the Internet, then concrete practical methods of implementation
will be essential. In particular, the communication issue needs to be
addressed. As communication is an essential component for cooperating

public void process(String msg) {
DocumentBuilderFactoryfactory= DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = factory.newDocumentBuilder();
ByteArrayInputStream is = new ByteArrayInputStream(msg.getBytes());
Document doc = builder.parse(is);

:

Listing 2 Parsing an XML message

Figure 3 DOM structure for XML example

Figure 4 Modified payload document object model

Innovations Through Information Technology 689

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

agents, programmers need to be able to implement a simple, extensible
form of communication. The current standards are quite complex, with
little attention being given to actual message payload. Many of the
papers dealing with communication are developing logic based languages
for intelligent agents, yet the vast majority of agents will not be
intelligent and will only need to deal with simple communication.

XML provides us with a means to specify a message payload using
a simple hierarchical format. With current research and development
pushing XML to be the standard for data transfer on the Web, the
development of API’s for XML parsing and recognition are well
advanced. Utilization of these API’s provides the agent programmer
with a practical and simple method to implement message payload
construction and deconstruction with minimal effort. This also provides
us with a way to structure the messages in a format which is flexible and
extensible, allowing for future expansion.

REFERENCES
Arnold, T., & Eaton, J. (2000). Simple Commerce Messaging

Protocol (SCMP) Version 1 Message Specification. IETF. Retrieved 1/
9/2003, 2003, from the World Wide Web: http://www.globecom.net/
ietf/draft/draft-arnold-scmp-06.html

DARPA. (1993). Knowledge Sharing Initiative. Specification of
the KQML agent-communication language.: DARPA Knowledge Shar-
ing Initiative, External Interfaces Working Group.

FIPA. (2002). ACL Message Structure Specification [Web Page].
Foundation for Intelligent Physical Agents. Retrieved 20 Aug, 2003,
from the World Wide Web: http://www.fipa.org/specs/fipa00061/

FIPA. (2003). ACL Message Representation in XML Specification
[Web Page]. Foundation for Intelligent Physical Agents. Retrieved 20
Aug, 2003, from the World Wide Web: http://www.fipa.org/specs/
fipa00071/

Genesereth, M., & Fikes, e. a. (1992). Knowledge Interchange
Format, Version 3.0 Reference Manual. Technical Report: Computer
Science Department, Stanford University.

Labrou, Y., Finin, T., & Peng, Y. (1999). The Current Landscape
of Agent Communication Languages. IEEE Intelligent Systems, 14(2).

Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., & Byrne,
S. (2003, 9/6/2003). Document Object Model (DOM) Level 3 Core
Specification. W3C. Retrieved 1/9/2003, 2003, from the World Wide
Web: http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030609/

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T.,
& Swartout, W. (1991). Enabling Technology for Knowledge Sharing.
AI Magazine, 12(3), 36-56.

Nwana, H. (1996). Software Agents: An Overview. Knowledge
Engineering Review, 11(3).

Odell, J. (2003). Agent Construction Tools. Retrieved 12/9/2003,
2003, from the World Wide Web: http://www.paichai.ac.kr/~habin/
research/agent-dev-tool.htm

Quin, L. (2003). XML Core Working Group Public Page. W3C.
Retrieved 25/6/2003, 2003, from the World Wide Web: http://
www.w3.org/XML/Core/

Singh, M. P. (1998). Agent Communication Languages: Rethinking
the Principles. IEEE Computer, 31(12), 40-47.

Wooldridge, M., & Jennings, N. (1995). Intelligent Agents: Theory
and Practice. Knowledge Engineering Review, 10(2, June 1995).

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/using-xml-simple-hierarchical-

communication/32456

Related Content

Archaeological GIS for Land Use in South Etruria Urban Revolution in IX-VIII Centuries B.C.
Giuliano Pelfer (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 3419-

3433).

www.irma-international.org/chapter/archaeological-gis-for-land-use-in-south-etruria-urban-revolution-in-ix-viii-centuries-

bc/184054

Software Development Life Cycles and Methodologies: Fixing the Old and Adopting the New
Sue Conger (2011). International Journal of Information Technologies and Systems Approach (pp. 1-22).

www.irma-international.org/article/software-development-life-cycles-methodologies/51365

Using Technology to Reduce a Healthcare Disparity
Nilmini Wickramasinghe (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp.

3725-3732).

www.irma-international.org/chapter/using-technology-to-reduce-a-healthcare-disparity/184081

Security Detection Design for Laboratory Networks Based on Enhanced LSTM and AdamW

Algorithms
Guiwen Jiang (2023). International Journal of Information Technologies and Systems Approach (pp. 1-13).

www.irma-international.org/article/security-detection-design-for-laboratory-networks-based-on-enhanced-lstm-and-

adamw-algorithms/319721

Science, Ethics, and Weapons Research
John Forge (2018). Encyclopedia of Information Science and Technology, Fourth Edition (pp. 3205-3213).

www.irma-international.org/chapter/science-ethics-and-weapons-research/184031

http://www.igi-global.com/proceeding-paper/using-xml-simple-hierarchical-communication/32456
http://www.igi-global.com/proceeding-paper/using-xml-simple-hierarchical-communication/32456
http://www.irma-international.org/chapter/archaeological-gis-for-land-use-in-south-etruria-urban-revolution-in-ix-viii-centuries-bc/184054
http://www.irma-international.org/chapter/archaeological-gis-for-land-use-in-south-etruria-urban-revolution-in-ix-viii-centuries-bc/184054
http://www.irma-international.org/article/software-development-life-cycles-methodologies/51365
http://www.irma-international.org/chapter/using-technology-to-reduce-a-healthcare-disparity/184081
http://www.irma-international.org/article/security-detection-design-for-laboratory-networks-based-on-enhanced-lstm-and-adamw-algorithms/319721
http://www.irma-international.org/article/security-detection-design-for-laboratory-networks-based-on-enhanced-lstm-and-adamw-algorithms/319721
http://www.irma-international.org/chapter/science-ethics-and-weapons-research/184031

