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ABSTRACT
The signature file method is a popular indexing technique used in
information retrieval and databases. It excels in efficient index
maintenance and lower space overhead. However, it suffers from
inefficiency in query processing due to the fact that for each query
processed the entire signature file needs to be scanned. In this paper,
we introduce a graph structure, called a signature graph, established
over a signature file, which can be used to expedite the signature file
scanning by one order of magnitude or more.

INTRODUCTION
In this paper, we propose a graph structure, called a signature

graph, constructed over a signature file, which can be used as an index
structure for documents, classes in object oriented databases and records
in relational databases.

The signature file method was originally introduced as a text
indexing methodology [Fa85, FLPS90]. Nowadays, however, it is
utilized in a wide range of applications, such as in office filing [CTHP86],
hypertext systems [FLPS90], relational and object-oriented databases
[CS89, IKO93, LL92, SKRT95, YLK94], as well as in data mining
[AB97]. Compared to the inverted index, the signature file is more
efficient in handling new insertions and queries on parts of words. But
the scheme introduces information loss. More specifically, its output
usually involves a number of false drops, which may only be identified
by means of a full text scanning on every text block short-listed in the
output. Also, for each query processed, the entire signature file needs to
be searched [CF84, Fa85, Fa92]. Consequently, the signature file method
involves high processing and I/O cost. This problem is mitigated by
partitioning the signature file, as well as by exploiting parallel computer
architecture [CZ96, Le95, SK86].

During the creation of a signature file, each word is processed
separately by a hashing function. The scheme sets a constant number
(m) of 1s in the [1..F] range. The resulting binary pattern is called the
word signature. Each text is seen to be composed of fixed size logical
blocks and each block involves a constant number (D) of non-common,
distinct words. The D word signatures of a block are superimposed (bit
OR-ed) to produce a single F-bit pattern, which is the block signature
stored as an entry in the signature file.

Fig. 1 depicts the signature generation and comparison process of
a block containing three words (then D = 3), say “SGML”, “database”,
and “information”. Each signature is of length F = 12, in which m = 4
bits are set to 1. When a query arrives, the block signatures are scanned
and many nonqualifying blocks are discarded. The rest are either checked
(so that the “false drops” are discarded; see below) or they are returned
to the user as they are. Concretely, a query specifying certain values to
be searched for will be transformed into a query signature s

q
 in the same

way as for word signatures. The query signature is then compared to
every block signature in the signature file. Three possible outcomes of
the comparison are exemplified in Fig. 1: (1) the block matches the
query; that is, for every bit set in s

q
, the corresponding bit in the block

signature s is also set (i.e., s ∧ s
q
 = s

q
) and the block contains really the

query word; (2) the block doesn’t match the query (i.e., s ∧ s
q
 � s

q
); and

(3) the signature comparison indicates a match but the block in fact
doesn’t match the search criteria (false drop). In order to eliminate false
drops, the block must be examined after the block signature signifies a
successful match.

In this paper, we propose a method to speed up the (sequential)
signature file scanning by introducing the concept of signature identi-
fiers and establishing a graph structure, a signature graph for it just like
a position tree for a text [AHU74]. But by the construction of a position
tree, a position identifier is a continuous piece of character sequence,
while by the construction of a signature graph a signature identifier is
not a continuous piece of bit string.

A closely related work is the S-tree proposed in [De86]. It is in fact
a R-tree built over a signature file. Thus, it can be used to speed up the
locating of a signature in a signature file just like a R-tree for primary
keys in a relational database. However, in the signature graph each path
corresponds to a signature identifier which can be used to identify
uniquely the corresponding signature in a signature file. It helps to find
the set of signatures matching a query signature quickly.

Signature files can also be utilized as set access facility in OODBSs
[IKO93]. Especially, according to the analysis of [IKO93], the bit-sliced
signature file (BSSF) achieves a higher performance than the sequential
signature file (SSF) by almost 50% (of time cost) in the best case. But
the storage cost of BSSF doubles that of SSF and the update cost of BSSF
triples that of SSF or more [IKO93]. Later on, we’ll see that a signature
graph has a much better time complexity and less update cost than BSSF
but with almost the same storage cost.

SIGNATURE GRAPH
A first idea to improve the performance is to sort the signature file

and then employ a binary searching. Unfortunately, this does not work
due to the fact that a signature file is only an inexact filter. The following
example helps for illustration.

Consider a sorted signature file containing only three signatures:

0 1 0 0 0 0 1 0 0 1 1 0
0 1 0 1 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 1 0 1 0 0

Fig. 1. Signature generation and comparison

 text: … SGML … database …information … matching 
word signatures: queries: query signatures: results: 
 SGML 010000100110 SGML 010000100110 match with 
     OS 
 database 100010010100 XML 011000100100  no match 
     with OS 
 information ∨010100011000 informatik 110100100000 false drop 
 
object signature110110111110 
(OS) 
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Assume that the query signature s
q
 is equal to 000010010100. It

matches 100 010 010 100. However, if we use a binary search, 100 010
010 100 can not be found.

For this reason, we try a different way and organize a signature file
into a graph, called a signature graph, which will be discussed in this
section in great detail.

Definition of signature graphs
A signature graph working for a signature file is just like a trie [31,

34] for a text. But in a signature graph, each path visited to find a
signature that matches a query signature corresponds to a signature
identifier, which is not a continuous piece of bits, and quite different
from a trie in which each path corresponds to a continuous piece of bits.

Definition 1. (signature graph) A signature graph G for a
signature file S = s

1
.s

2
 ... .s

n
, where s

i 
�  s

j 
for i � j and |s

k
| = F for k = 1,

..., n, is a graph G = (V, E) such that

1. each node v Î V is of the form (p, skip), where p is a pointer to a
signature s in S, and skip is a non-negative integer i. If i > 0, it tells
that the ith bit of s

q
 will be checked when searching. If i = 0, s will

be compared with s
q
.

2. Let e = (u, v) Î E. Then, e is labeled with 0 or 1 and skip(u) > 0.
Let skip(u) = i. If e is labeled with 0 and i > 0, the ith bit of the
signature pointed to by p(v) is 0. If e is labeled with 1 and i > 0,
the ith bit of the signature pointed to by p(v) is 1. A node v with
skip(u) = 0 does not have any children.

In Fig. 2(b), we show a signature graph for the signature file shown
in Fig. 2(a).

The following is the formal description of the algorithm.
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In Fig. 2, each p
i
 represents a pointer to a s

i
 (i = 1, ..., 8).

In the following, we first discuss how a signature graph is con-
structed in 2.2. Then, we discuss how to use signature graphs to speed
up the search of signature files in 2.3.

Construction of signature graphs
Below we give an algorithm to construct a signature graph for a

signature file, which needs O(N•F) time, where N represents the number
of signatures in the signature file and F is the length of a signature.

At the very beginning, the graph contains an initial node: a node
v with p(v) pointing to the first signature and skip(v) = 0.

Then, we take the next signature to be inserted into the graph. Let
s be the next signature we wish to enter. We traverse the graph from the
root and each encountered node will be marked. Let v be a node
encountered and assume that skip(v) = i. If v is not marked and i > 0, check
s[i] and mark v. If s[i] = 0, we go left. Otherwise, we go right. If i = 0 or
v is marked, we compare s with the signature s’ pointed to by p(v). s’ can
not be the same as s since in S there is no signature which is identical to
anyone else. (If there are two identical signatures s

1 
and s

2
, we remove

s
2 

and associate the oids of s
1 

and s
2
 with s

1
.) But several bits of s can be

determined, which agree with s’. Assume that the first k bits of s agree
with s’; but s differs from s’ in the (k + 1)th position, where s has the
digit b and s’ has 1 - b. We construct a new node u with skip(u) = k + 1
and p(u) pointing to s. Let w

1
 → w

2
 ... → w

j 
 → v be the accessed path. Then,

make u the left child of w
j
 if v is a left child of w

j
; otherwise, make u the

right child of w
j
. If b = 1, we make v be the left child of u and the right

pointer of u pointing to itself. If b = 0, we make v be the right child of
u and the left pointer of u pointing to itself.
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In the procedure insert( ), stack is a stack structure used to control
the graph traversal.

In Fig.3, we trace the above algorithm against the signature file
shown in Fig. 2(a).

Searching of signature graphs
In terms of the construction of signatures, the matching of

signatures is a kind of ‘inexact’ matches. That is, for a signature s in S,
any bit set to 1 in s

q
, the corresponding bit in s is also set to 1, then we

say, s matches s
q
.

insert s1 inser t s2 insert s3
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Fig. 3. Sample trace of signature graph construction
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In the following, we first describe how to traverse a signature graph
to find a signature in S which may be identical to s

q
 (exact matching).

Then, we present an algorithm which is able to find all the signatures that
may match s

q
.

To find a signature in S that may be identical to s
q
, see figure 3.

Algorithm exact-matching(G, s
q
)

1. The search begins from the root.
2. Let v be the node encountered. Let skip(v) = i. If ith bit of s

q 
is 1,

explore the right child of v; otherwise, explore the left child of
v. v is marked.

3. The search ends up when a node v is encountered, which is marked
or skip(v) = 0. In this case, compare s

q 
with the signature pointed

to by p(v).

In the following, we show the correctness of the Algorithm exact-
matching( ). To do this, we introduce the concept of signature
identifiers.

Consider a signature s
i 
of length m. We denote it as s

i 
= s

i
[1]s

i
[2] ...

s
i
[m], where each s

i
[j] ∈ {0, 1} (j = 1, ..., F). We also use s

i
(j

1
, ..., j

h
) to

denote a sequence of pairs w.r.t. s
i
: (j

1
,
 
s

i
[j

1
])(j

2
, s

i
[j

2
]) ... (j

h
, s

i
[j

h
]), where

1 ≤ j
k ≤ m for k ∈ {1, ..., h}.
Definition 2 (signature identifier) Let S = s

1
.s

2
 ... .s

n
 denote a

signature file. Consider s
i 
(1 ≤ i ≤ n). If there exists a sequence: j

1
, ..., j

h

such that for any k ¹� i (1 ≤ k ≤ n) we have s
i
(j

1
, ..., j

h
) ¹ � s

k
(j

1
, ..., j

h
),

then we say s
i
(j

1
, ..., j

h
) identifies the signature s

i
 or say s

i
(j

1
, ..., j

h
) is an

identifier of s
i
 w.r.t. S.

For example, in Fig. 6(a), s
8
(5, 1, 4) = (5, 1)(1, 1)(4, 0) is an

identifier of s
8
 since for any i � 8 we have s

i
(5, 1, 4) � s

8
(5, 1, 4). (For

instance, s
5
(5, 1, 4) = (5, 0)(1, 0)(4, 1) � s

8
(5, 1, 4), s

2
(5, 1, 4) = (5, 1)(1,

1)(4, 1) � s
8
(5, 1, 4), and so on. Similarly, s

1
(5, 4, 1) = (5, 0)(4, 1)(1,

1) is an identifier for s
1 

since any i � 1 we have s
i
(5, 4, 1) �s

1
(5, 4, 1).)

Let v
1
 → ... v

k-1
 → v

k
 be the path explored. Let skip(v

i
) = j

i
 (i = 1, ...,

k). Let s the signature pointed to by p(v
k
). Denote l

i 
the label for v

i-1
 →

v
i
. Then, we have

s(j
2
, ..., j

k
) = s

q
(j

2
, ..., j

k
) = (j

1
,
 
l

1
)(j

2
, j

2
) ... (j

k
-1, l

k-1
).

But we don’t have any other signature such that

s’(j
2
, ..., j

k
) = (j

1
,
 
l

1
)(j

2
, j

2
) ... (j

k-1
, l

k-1
).

The path v
1
 → ... v

k-1
 → v

k 
is called the identifying path of p(v

k
).

Now we discuss how to search a signature graph to model the
behavior of a signature file as a filter and to get all the signatures that
may match s

q
.

Denote s
q
(i) the ith position of s

q
. During the traversal of a signature

graph, the inexact matching can be done as follows:

(i) Let v be the node encountered and s
q
(i) be the position to be

checked.
(ii) If s

q 
(i) = 1, we move to the right child of v.

(iii) If s
q 

(i) = 0, both the right and left child of v will be visited.

In fact, this definition just corresponds to the signature matching
criterion.

To implement this inexact matching strategy, we search the
signature graph in a depth-first manner and maintain a stack structure
stack

p
 to control the graph traversal.

Algorithm  signature-graph-search
input: a query signature s

q
;

output: set of signatures which survive the checking;
1. Set ← ∅.
2. Push the root of the signature graph into stack

p
.

3. If stack
p 

is not empty, v ← pop(stack
p
);

else return(Set).

4. If v is not a marked node and skip(v) ¹ 0,
{i ¬ skip(v);
mark v;
If s

q 
(i) = 0, push c

r
 and c

l 
into stack

p
; (where c

r
 and c

l 
are v’s right

and left child, respectively.) otherwise, push only c
r
 into stack

p
;}

5. Compare s
q 

with the signature pointed by p(v).
(*p(v) - pointer to a signature*)
If s

q 
matches, Set ← Set ∪ {p(v)}.

6. Go to (3).

The following example helps for illustrating the main idea of the
algorithm.

Example 4 Consider the signature file and the signature graph
shown in Fig. 2(a) once again.

Assume s
q 

= 1011011. Then, only part of the signature graph
(marked with thick edges in Fig. 4) will be searched. On reaching a v that
is marked or skip(v) = 0, the signature pointed to by this node will be
checked against s

q
. Obviously, this process is much more efficient than

a sequential searching since only 2 signatures (marked grey) need to be
checked while a signature file scanning will check 8 signatures.

In general, if a signature file contains N signatures, the method
discussed above requires only O(N/2l) comparisons in the worst case,
where l represents the number of bits set in s

q
 and checked during the

searching, since each bit set in s
q 

will prohibit half of a subgraph from
being visited. Compared to the time complexity of the signature file
scanning O(N), it is a major benefit. We will discuss this issue in the next
section in more detail.

MAINTENANCE OF SIGNATURE FILES
When a signature s is added to a signature file, the corresponding

signature graph can be changed easily by running the algorithm insert(
) once with s as the input (see 2.2).

When a signature is removed from the signature file, we need to
reconstruct the corresponding signature graph. To explain how to do
this, we first establish a proposition.

Proposition 1. Let v be a node in a signature graph G. If v is the
root or skip(v) = 0, the indegree of v is equal to 1 if |G| > 1, or 0 if |G|
= 1; otherwise it is equal to 2.

Proof. We prove the proposition by induction on the number n of
nodes in G.

Basis. When n = 1, G contains only a root r with p(r) = 0. The
proposition holds. When n = 1, the proposition also holds.

Induction hypothesis. Assume that when n = k, the proposition
holds. We consider the case when n = k + 1.

Let u be the last node inserted into G with skip(u) = s. Let G’ = G/
{u}. u is inserted into G’ by comparing s with a signature s’ pointed to
by a p(v) for some v in G. From lines 13 - 19 of Algorithm insert( ), we
can see that v is not changed; and the indegree of u is equal to 2 since
there is an edge from v’s parent to u and another edge going from u to
itself.

Proposition 2. Let v be a node in a signature graph G. If skip(v)
= 0, the outdegree of v is equal to 0; otherwise it is equal to 2.

Proof. Similar to Proposition 1.
In terms of these two propositions, the deletion of a signature s

from G can be done as follows.

Fig. 4. Signature graph search
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(i)Search G from the root until a node v is encountered, which is
marked or skip(v) = 0. Compare p(v) and s. If s matches p(v) exactly, go
to (ii); otherwise, nothing will be done.

(ii)Let v
1
 → ... v

k-1
 → v

k
 → v be the path explored.

If v
k
 ≠ v, replace p(v) with p(v

k
). Let u

1 
be another child of v

k 
(not

on the path). Let u
2 

be another parent of v
k 

(not on the path). Replace
v

k-1
 → v

k
 with v

k
 → u

1
, and replace v

k
 → v with u

2
 → v. Remove v

k
. Note

that u
2 
can be found by searching G from v

k
 with the target signature being

p(v
k
). (See Fig. 5 for illustration.)

If v
k
 = v, replace v

k
 → v

k
 with v

k-1
 → u

1
. Remove v

k
. (See Fig. 6. for

illustration.)
In Fig. 6, to remove the signature pointed to by v, we remove v

k
,

a parent of v. It is because in v
k
, skip(v

k
) now becomes useless. However,

p(v
k
) must be remained. We do this by replacing p(v) (in v) with p(v

k
),

which will not change the signature identifier for p(v
k
). We have the

proposition in figure 4.

Proposition 3. Let P = v
1
 → ... v

k-1
 → v

k
 → ðv be the path explored

such that p(v) = s (the signature found by (i)). (ii) will not change the
signature identifier for p(v

k
).

Proof. If v is a node with p(v) = 0, then the path comprising v
1
 →

... v
k-1

, v
k-1

 → u
1
, the path from u

1
 to u

2
, which is explored with the target

signature being p(v
k
), and u

1
 → v, is the identifying path of p(v

k
). If v is

marked (i.e., visited for the second time), then there exists an i (1 ≤ i
≤ k) such that v = v

i
. So the path comprising v

1
 → ... v

k-1
, v

k-1
 → u

1
, the path

from u
1
 to u

2
, which is explored with the target signature being p(v

k
), and

u
1
 → v

i
, is the identifying path of p(v

k
).

A similar analysis applies to the case of v
k
 = v.

CONCLUSION
In this paper, a new structure called a signature graph has been

introduced, which can be used to speed up the search of signatures in a
signature file. Given a query signature, we search the corresponding
signature graph to find all the possible signatures that may match it. In
this way, the sequential scanning of a whole signature file can be avoided,
which improves the query processing efficiency significantly.
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