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ABSTRACT
In this paper, we address a new approach to solving the ill-posed

nonlinear inverse problem of reconstruction of the radar images of the
wavefield sources distributed in the environment via processing the
remotely sensed data signals distorted in the stochastic measurement
channel. By exploiting the idea of combining the Bayesian estimation
theory and descriptive regularization techniques we address a new fused
Bayesian-regularization method for image enhancement as it is required
for computer-aided imagery with remotely sensed data.

I.   INTRODUCTION
In this paper, we address a new approach to computer-aide enhance-

ment of radar images (RI) stated and treated as an ill-posed inverse
problem of reconstruction of the spatial spectrum pattern (SSP) of the
wavefield sources scattered from the probing surface via processing the
remotely sensed data signals distorted in the stochastic measurement
channel. We propose a new fused Bayesian-regularization (FBR) method
that combines the Bayesian inference paradigm [1], [2] with the
descriptive regularization techniques [3], [5] for scattering inverse
problems solution. With this method, we present the FBR-based inter-
pretation of a family of the conventional array imaging algorithms and
propose some their modifications to enhance the resolution perfor-
mances of the computer-reconstructed radar images.

II.   SSP ESTIMATION AS AN INVERSE PROBLEM
A. Problem Statement

Consider a coherent RI experiment in a random medium and the
narrowband assumption [1],  [4] that enables one to model the
backscattered field of the remotely sensed object associated with the
probing surface X ‘ x by imposing its time invariant complex scattering
function e(x) over the object scene X. The measurement data wavefield
u(y) = s(y) + n(y) consists of the echo signals  s  and additive noise  n ,
and is available for observations and recordings within the prescribed
time-space observation domain Y = T´P, where y = (t, p)T defines the time-
space points in Y. The model of the observation wavefield  u is defined
by specifying the stochastic equation of observation of an operator form
[1]: u = Se + n; e ∈ E; u,  n ∈ U; S: E →U, in the Gilbert signal spaces
E and U with the metric structures induced by the inner products, [u

1
, u

2
]

U

= 1 2� � � �
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u u d∗∫ y y y
, and [e

1
, e

2
]

E 
= 1 2� � � �

X

e e d∗∫ x x x
, respectively.

 
The

operator model of the stochastic equation of observation (EO) in the
conventional integral form [1], [3] may be rewritten as

u(y)  = (Se(x ))(y) =
,� �

X

S∫ y x
e(x )dx +  n(y) = 0 ,� �

X

S∫ y x
e(x )dx

+
,� �

X

Sµ∫ y x
e(x)dx + n(y) .  (1)

     The random functional kernel S(y,
 
x) of the operator S  given

by (1) defines the signal wavefield formation model. Its mean S
0
(y, x)

is referred to as the regular signal formation operator (SFO) in the data
measurement channel defined by the time-space modulation of signals
employed in a particular radar system [3], [4]. The random variation
about the mean   S

m
(y, x) = m(y,

 
x)S

0
(y,

 
x)

 
models the stochastic

perturbations of the wavefield at different propagation paths, where
m(y,

 
x) is the zero-mean multiplicative noise specified by the propaga-

tion properties of the medium [1]. All the fields e, n, u  in (1) are assumed
to be zero-mean complex valued Gaussian random fields. Next, we

assume an incoherent nature of the backscattered field ( )e x . This is

naturally inherent to the RI experiments [1], [3] and leads to the δ -

form of the object field correlation function, R
e
(x

1
,x

2
) = B(x

1
)d(x

1
– x

2
),

where 
 
e(x)

  
and  B(x) = <|e(x)|2> are referred to as a random complex

scattering function of the extended object (probing surface) and its
average power scattering function or spatial spectrum pattern (SSP),
respectively. The inverse problem of SSP reconstruction is to derive an

estimate ˆ ( )B x  (referred to as the desired radar image) by processing the

available finite dimensional array (synthesized array) measurements of
the data wavefield  u(y).

B. Projection Model of the Data Measurements
Viewing it as an approximation problem leads one to the projection

concept for reduction of the data field u(y) to the M-D vector U of
sampled spatial-temporal data recordings

U = SE + N ,  (2)

where  E, and  U  are the zero-mean  vectors  composed  of  the coefficients
E

k
 = [e, g

k
]

E 
; k = 1, …, K and U

m
 = [u, h

m
]

U
;

       
m = 1, …, M, of the finite

dimensional approximations of the corresponding fields e, u in the
approximation (measurement) spaces U

(M) 
 = span{h

m
} and  E

(K)
 = span{g

k
}

spanned by the properly selected basis functions {h
m
} and {g

k
} [5]. In (2),

matrix S corresponds to the M´K approximation of the regular SFO S
0

[5], and N is the composite noise vector that accumulates the K-D
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approximation of the signal-dependent noise component given by the

second integral in (1). Physically, the complex conjugate set { ( )mh∗ y }

is specified by a composition of the antenna element tapering functions
{τ

l
(p); l = 1, …, L} (that we admit to be either identical or different for

the different elements of the L-D array), and the impulse response
functions {χ

i
(t); i = 1, …, I} of the I sampling filters in the corresponding

spatial receive channels (as well identical or different) ordered by multi-
index  m = (l, i) = 1, …, M = L´I. In practice, the antenna elements are
distanced in space (do not overlap), i.e. the tapering functions {t

l
(p)}

have the distanced supports in P  p, thus, they compose a set of
orthogonal functions. The same assumption of orthogonality is usually
valid for the sampling filters  {χ

i
(t)}, t ∈ T, in which case the dual basis

[5] {φ
m
(y)} is simply the properly normalized set of {h

m
(y)}, i.e. {φ

m
(y)

= ||h
m
(y)||–2h

m
(y);  m = 1, …, M}.

The same projection formalism is valid for the set of basis functions
{g

k
} with the corresponding dual basis {j

k
(x)} [5].

Vectors E, N and U are characterized by the correlation matrices
RE = D = D(B) = diag(B) (a diagonal matrix with vector B at its main
diagonal), RN, and RU = SR

E
S+ + RN, respectively. (Recall that superscript

+ defines the Hermitian conjugate when stands with a matrix or vector).
The vector, B, is composed of the elements  B

k
 = <E

k
E

k
*>; k = 1, …, K,

and is referred to as a 
 
K-D vector-form approximation of the SSP.

     We refer to the estimate B̂  as a discrete-form representation

of the brightness image of the wavefield sources distributed in the
environment remotely sensed with the array (or synthesized array)
radar, in which case the continuous-form finite dimensional approxima-

tion of the estimate of the SSP distribution ( )
ˆ ( )KB x  over the remotely

sensed scene in a given spatial domain X ‘ x can be expressed as follows
[5 ]

( )
ˆ ( )KB x

 
= ∑ B

k 
|ϕ

k
(x)|2 = ϕϕϕϕϕT(x)diag( B̂ )ϕϕϕϕϕ(x)  (3)

where 
 
j(x)

 
 represents a K-D vector composed of the dual basis functions

{j
k
(x)} = dual{g

k
} in E

(K)
.

     Analyzing (3), one may deduce that in every particular measure-
ment scenario (specified by the corresponding approximation spaces

U
(M) 

and E
(K)

) one has to derive the estimate B̂  of a vector-form

approximation of the SSP distribution over the scene that uniquely
define the approximated continuous SSP estimate (3).

III.   FBR STRATEGY FOR SSP ESTIMATION

In the descriptive statistical formalism, the desired SSP vector B̂
is recognized to be the vector of a main diagonal of the estimate of the

correlation matrix RE(B), i.e. B̂ = { ˆ
ER }

diag
. Thus one can seek to

estimate B̂ = { ˆ
ER }

diag  
given the data correlation matrix  RU  pre-

estimated by some means, e.g. [2]

ˆ
UR =

 
Y = aver

j J∈ {U
(j)

 U+
(j)

}  (4)

by determining the solution operator [that we also refer to as the
image formation operator (IFO)] F such that

B̂ = { ˆ
ER }

diag
 = {FYF+}

diag
 .   (5)

     To optimize the search of  F  we propose here the  following
FBR strategy

F → 
F

min{ Â
 
(F)},    (6)

ℜ
 
(F) = trace{(FS – I)A(FS – I)+} + α trace{FRNF+}

that implies the minimization of the weighted sum of the systematic
error (the first term in Â

 
(F)) and fluctuation error (the second term in

ℜ
 
(F)) in the desired estimate B̂  where the selection (adjustment) of the

regularization parameter a and the weight matrix A provides the
additional regularization degrees of freedom incorporating any descrip-
tive properties of a solution if those are known a priori [4], [5].

 In the case of the solution-dependent A, i.e. when A = D, the
problem given by (6) is recognized to coincide with the Bayes minimum
risk (BMR) strategy that optimally balances the spatial resolution and
the noise energy in the resulting estimate [5]. In the case of other chosen
A ≠ D = diag{B}, we regularize the absence of a priori knowledge about
the SSP B, hence introduce additional degrees of freedom into the desired
solution. That is why we address (6) as the FBR strategy.

III.   UNIFIED FBR ESTIMATOR
Routinely solving the minimization problem (6) we obtain

F = KA,a
S+

1−
NR     (7)

where

 KA,a  = (S+
1−

NR S + aA–1)–1 .    (8)

For this solution operator (IFO) the minimal possible value Â
min

(F)
= tr{KA,a

} of the objective function Â(F) is attained.
     In the general case of arbitrary fixed  a

  
and

 
 A, the unified FBR

estimator for the SSP vector  becomes

ˆ
FBRB  = {KA,a

S+
1−

NR Y 1−
NR SKA,a

}
diag 

 = {KA,a
ave r

j J∈
{Q

(j)
Q+

(j)
}KA,a

}
diag

( 9 )

where Q
(j)

 = {S+
1−

NR U
(j)

} is recognized to be an output of the matched

spatial filtering algorithm with noise whitening that assumes the given
noise correlation matrix R

N
. Although in practical scenarios the noise

correlation matrix  R
N 

 is usually unknown, it is a common practice in

such cases to accept the robust white noise model, i.e. 1−
NR  = (1/N

0
)I, with

the noise intensity
 
 N

0  
pre-estimated by some means [2].

IV.   FAMILY OF THE FBR-OPTIMIZED ESTIMATORS
A. Robust Spatial Filtering Algorithm

Consider the white zero-mean noise in observations and no pref-
erence to any prior model information, i.e putting A = I. Let the
regularization parameter be adjusted as the inverse of the signal-to-noise
ratio (SNR), e.g. a = N

0
/B

0
, where B

0  
is the prior average gray level of

the SSP. In that case the IFO  F  is recognized to be the Tikhonov-type
robust  spatial filter:

F
RSF

  = F (1)  = (S+S + (N
0
/B

0
)I

 
)–1S+.   (10)

B. Matched Spatial Filtering Algorithm
Consider the model from the previous example for an assumption,

a >> ||S+S|| , i.e. the  case of a priority of suppression of the noise over
the systematic error in the optimization problem (6). In this case, we
can roughly approximate (10) as the matched spatial filter:

 F
MSF

  =  F(2)  »  const × S+.     (11)

C.  Adaptive Spatial Filtering Algorithm
Consider the case of zero-mean noise with an arbitrary correlation

matrix R
N
, equal importance of two error measures in (6), i.e. a = 1, and

the solution dependent weight matrix 
 
A = D̂  = diag( B̂ ). In this case,

the IFO F becomes the adaptive spatial filter:

∋ 
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F
ASF

 =  F(3)  = H = (S+
1−

NR S + 1ˆ −D )–1S+
1−

NR .  (12)

D. MVDR Version of the ASF Algorithm
As it was shown in [5], the solution operator defined by (12) can

be represented also in another equivalent form

F
MVDR 

 = F(4) = D̂ S+Y–1
 
= (S+

1−
NR S + 1ˆ −D )–1S+

1−
NR ,  (13)

in which case, the solution (9) can be expressed as [5]

ˆ
MVDRB  = { ˆ

ER }
diag

 = {(S+Y–1S )–1}
diag

 (14)

that coincides with the well known minimum variance distortionless
response (MVDR) method [2]

ˆ
kB  = ( 1

k k
+ −s Y s )–1 ;   k = 1, …, K.  (15)

Here s
k
 represents the steering vector for the kth look direction,

which in our notations is essentially the kth column vector of the SFO
matrix S.

Examining the formulae (12) and (13) one may easily deduce that
F(3) = F(4). Thus, on one hand, the celebrated MVDR estimator (15) may
be viewed as the convenient practical form of implementing the
adaptive spatial filtering algorithm. On the other hand, it is obvious now
that the MVDR beamformer may be considered as a particular case of
the derived above unified FBR image formation algorithm (9) under the

model assumptions: A = diag( B̂ ), a = 1.

V.   COMPUTER SIMULATIONS AND DISCUSSIONS
Figure 1. Simulation results: a) original scene; b) image formed

applying the MSF method; c) image formed applying the RSF method;
d) mage formed applying the MVDR version of the FBR method.

We simulated a conventional side-looking imaging radar (i.e. the
array was constructed by the moving antenna) with the SFO factored
along two axes in the image plane: the azimuth (horizontal axis) and the
range (vertical axis). We considered the triangular radar range ambiguity
function of 5 pixels width, and the exp(–ax2)

  
shape of the azimuth

ambiguity function with parameter a adjusted to provide the 16 pixels
width at 0.5 from its peak level. Figure 1.a shows the original scene of
the 280-by-512 pixel format. The results of radar image formation for
the 8% additive noise that employ the IFO given by (11), (10) and (12)

are displayed in Figures 1.b, 1.c and 1.d, respectively. The advantage of

the FBR-optimized imaging experiments (cases ˆ
RSFB  and ˆ

ASFB ) over

the conventional case ˆ
MSFB  is evident. Due to the performed regular-

ized SFO inversions the resolution was improved in the both cases. For

the statistically optimized estimator,
 ˆ

ASFB , in addition, the ringing

effect was reduced, while the robust FBR-optimized estimator (RSF) with
the IFO given by (10) requires substantially less computations.

REFERENCES
[1] S.E. Falkovich, V.I. Ponomaryov, and Y.V. Shkvarko, Optimal

Reception of Space-Time Signals in Radio Channels With Scattering,
Moscow: Radio i Sviaz Press, 1989 (in Russian).

[2] Adaptive Radar Detection and Estimation, S. Haykin and A.
Steinhardt, Ed., New York: John Willey and Sons, 1992.

[3] Principles and Applications of Imaging Radar, F.M. Henderson
and A.V. Lewis, Ed., Manual of Remote Sensing, 3d Edition, Vol. 3, New
York: John Willey and Sons, 1998.

[4] Y.V. Shkvarko, “Theoretical Aspects of Array Radar Imaging
via Fusing Experiment Design and Descriptive Regularization Tech-
niques,” 2nd IEEE Sensor Array and Multichannel Signal Processing
Workshop, Washington DC, CD ROM, August 2002.

[5] Y.V. Shkvarko, “Estimation of Wavefield Power Distribution
in the Remotely Sensed Environment: Bayesian Maximum Entropy
Approach,” IEEE Transactions on Signal Processing, Vol. 50, pp.
2333-2346, September 2002.

 

�

 

�

(a) (b)

(c) (d)



 

 

0 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/proceeding-paper/towards-fused-bayesian-regularization-

method/32488

Related Content

Mapping the Dissemination of the Theory of Social Representations via Academic Social

Networks
Annamaria Silvana de Rosa, Laura Dryjanskaand Elena Bocci (2018). Encyclopedia of Information Science

and Technology, Fourth Edition (pp. 7044-7056).

www.irma-international.org/chapter/mapping-the-dissemination-of-the-theory-of-social-representations-via-academic-

social-networks/184401

Defining an Iterative ISO/IEC 29110 Deployment Package for Game Developers
Jussi Kasurinenand Kari Smolander (2017). International Journal of Information Technologies and Systems

Approach (pp. 107-125).

www.irma-international.org/article/defining-an-iterative-isoiec-29110-deployment-package-for-game-developers/169770

Simulating Complex Supply Chain Relationships Using Copulas
Krishnamurty Muralidharand Rathindra Sarathy (2018). Encyclopedia of Information Science and

Technology, Fourth Edition (pp. 5583-5594).

www.irma-international.org/chapter/simulating-complex-supply-chain-relationships-using-copulas/184259

The Systems View of Information Systems from Professor Steven Alter
David Paradice (2008). International Journal of Information Technologies and Systems Approach (pp. 91-

98).

www.irma-international.org/article/systems-view-information-systems-professor/2541

The Systems View of Information Systems from Professor Steven Alter
David Paradice (2008). International Journal of Information Technologies and Systems Approach (pp. 91-

98).

www.irma-international.org/article/systems-view-information-systems-professor/2541

http://www.igi-global.com/proceeding-paper/towards-fused-bayesian-regularization-method/32488
http://www.igi-global.com/proceeding-paper/towards-fused-bayesian-regularization-method/32488
http://www.irma-international.org/chapter/mapping-the-dissemination-of-the-theory-of-social-representations-via-academic-social-networks/184401
http://www.irma-international.org/chapter/mapping-the-dissemination-of-the-theory-of-social-representations-via-academic-social-networks/184401
http://www.irma-international.org/article/defining-an-iterative-isoiec-29110-deployment-package-for-game-developers/169770
http://www.irma-international.org/chapter/simulating-complex-supply-chain-relationships-using-copulas/184259
http://www.irma-international.org/article/systems-view-information-systems-professor/2541
http://www.irma-international.org/article/systems-view-information-systems-professor/2541

