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ABSTRACT
Modern drug design requires activity prediction within a large number of
chemical compounds using their descriptors that are often generated
with high-noise in high-dimensional space. Both computational perfor-
mance and classification quality face great challenges if machine
learning algorithms are to be applied successfully. For computational
efficiency, we implement the proximal support vector machine (PSVM)
since it only depends on linear operations and can be trained faster than
support vector machines (SVM) using quadratic optimization. For even
larger datasets, we use parallel computing to make the training and
classification time acceptable. To improve the classification quality, we
implement and compare the SVM, k-nearest neighbor, decision tree and
the naive Bayes classifiers. We measure the classification qualities by
using the cross-validation accuracies, generalization accuracies, and the
false positive and false negative ratios in ROC (receiver operating
characteristics) curves. We also conduct feature selection in order to find
the most important features and gain insights into the nature of the
descriptors of the compounds. Features are easy to select using linear
SVMs but the selection may be biased. We use a nonlinear kernel SVM
in the feature selection process to achieve a higher ranking quality. To
fully understand the properties of the noisy features in the dataset, we
experiment with different number of features using the SVM classifier
to obtain an optimal number of features.

INTRODUCTION
The problem of drug design is to find drug candidates from a large
collection of compounds that will bind to a target molecule of interest.
The compounds can be described by using a number of numerical
descriptors, or by using structural features directly. The descriptors are
drawn from a compound’s physicochemical properties. The descriptors
found in the quantitative structure activity relationship (QSAR) dataset
[9], for instance, encode the size, polarity, hydrogen bond donor, etc.,
for each of the possible substitutions. The thrombin drug dataset [1], also
used for the 2001 KDD cup, uses indicator variables as the descriptors,
indicating the presence or absence of certain characteristics derived
from shape-based comparison and alignment of compounds. Descriptors
may also be used to represent the traditional pharmacophore properties,
as is the case for the CDK2 dataset [14]. A compound may have a large
number of descriptors and the descriptor space contains numerous
dimensions. Activities meaningful for drug design include chemical
reactivity, biological activity and toxicity. It is widely believed that the
structure of a compound has a direct relationship to its activity.
Therefore, QSAR data representation is frequently used for computa-
tional models. In this work, we use the QSAR data abstraction to classify
drug-binding activities.

Neural networks have been used for the classification of active drug
candidates [5]. Genetic algorithms and decision trees have also been

applied to drug design [6, 9]. Support vector machines (SVM) have been
used for the analysis of pharmaceutical data [4] and for active learning
in drug discovery [14]. In this paper, we use the k-nearest neighbor
method and the naive Bayes classifier to classify active compounds, in
addition to using SVM and decision tree classifiers. We analyze and
compare the performance for each of these classifiers. Due to the high
dimensionality of the compound descriptor space, feature selection is
often conducted to select the most important descriptors and obtain
informative insights into the compounds. The support vector regression
method was used to select variables [3]. We use the recursive feature
elimination (RFE) approach to select feature descriptors [8]. Many
researchers use linear kernels for RFE, but we choose nonlinear kernel
in the RFE feature selection process in order to obtain better ranking.
The large number of features in the drug datasets are mixed with noise
and prevent normal machine learning algorithms from accurately and
effectively classifying the compounds. We test different numbers of
features and estimate the optimal number of features using the ranked
features. We test the algorithms on two datasets, the pyrimidines and
the triazines QSAR datasets. The former has been tested by a few
researchers but the latter has been rarely used due to its large size. The
triazines dataset contains more than 10,000 data points and requires a
considerable amount of training time. We use the proximal SVM (PSVM)
to improve computational performance. PSVM only needs linear
algebraic operations and does not rely on quadratic programming, which
is generally time consuming, as used by traditional SVMs. To further
reduce PSVM training time, we shuffle the dataset and select a subset of
the data points. To measure the classification qualities, we use the false
positive and false negative ratios in ROC  (receiver operating charac-
teristics) curves, in addition to the cross-validation accuracies and
generalization accuracies. The thrombin dataset exhibits extremely
high dimensionality, as it contains 139,351 descriptors for each com-
pound. For this dataset, we use parallel computing to reduce the training
time from hours to minutes.

We organization this paper as follows: In Section 2 we briefly describe
the classification algorithms used; in Section 3 we explain the datasets used
in this paper and present classification results; study feature selection is
presented in Section 4; and, conclusions are made in Section 5.

CLASSIFICATION ALGORITHMS
In this section we briefly describe the classification algorithms used in
our study for drug discovery, including support vector machine, naive
Bayes classifier, decision tree, and k-nearest neighbor method.

Support Vector Machine
Support vector machines (SVMs) [13] have been successfully applied to
a wide range of problems, including object recognition, speaker identi-
fication, face detection and text categorization. A support vector
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machine finds an optimal separating hyperplane between members of
two classes either in the input space or in an abstract feature space. If
the boundary between the two classes is nonlinear, a kernel function is
used to map the training data nonlinearly into a high dimensional feature
space and construct a separating hyperplane with maximum margin in
the feature space.

The basic idea of an SVM classifier is to find an optimal maximal margin
separating hyperplane between the two classes of data points. SVMs use
an implicit nonlinear mapping from the input space to a higher
dimensional feature space using kernel functions, in order to classify the
data points which are not linearly separable in the input space. The
nonlinear support vector machine can be formulated as follows, where
we follow the notation used by Mangasarian et al. [7].

min ( )22
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where X∈ℜm×n is the training data matrix, m is the number of data points
in the training set and n is the dimension of input space. We use X
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Solving the above optimization problem, we get u, γ and the separating
function. For a given data point x, the classifier function (separating
surface) is represented as,
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where the set of nonzero coefficients of a
i
 determines the support

vectors.

The Proximal Support Vector Machine
The optimization problem of (1) is a quadratic programming problem.
Its solution cannot be derived from linear algebraic operations alone.
The proximal SVM (PSVM) is derived by changing (1) to (6) below,

min ( )22
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subject to D(K(X,XT)Du – γ³) + y = e.

The solution to (6) is purely linear and defines the PSVM classifier
function as below.

f(x) = sgn((K(xT,XT)K(X,XT)+eT)Dv), ( 7 )

where

v = (I/v + D(KKT + eeT)D)-1e

= (I/v + GGT)-1e, ( 8 )

and

G = D(K – e). ( 9 )

The other variables can also be solved,

u = DKTDv (10)

γ = -eTDv (11)

y = v/v. (12)

The optimization problem of (6) is equivalent to that defined by (1).
Both theoretic proof and geometric interpretation are given in [7].
PSVM is much faster to solve than ordinary SVMs requiring quadratic
programming.

Naive Bayes Classifier
The naive Bayes classifier assumes independence of the features of a
dataset and uses Bayes theorem to estimate the posterior probabilities.
A class with the highest posterior probability is chosen as the label of
a given data point. Suppose data point x has features x

1
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n
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are C classes in the label set. The probability of data point x given a class
c is,
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where P(x
i
|c) is the probability of feature x

i
 given class label c. The

decision rule of the naive Bayes classifier is,

( ) ( )∏∈=
n

i
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where P(c) is the prior probability of class c. One advantage of the naive
Bayes classifier is that it can easily handle classification problems having
multiple classes.

Decision Tree Classifier
A decision tree classifier consists of a set of rules describing the
conditions based on which a given data point should be classified. The
rules are trained using the features of a dataset to maximize the
information gain. An internal node of a decision tree is labeled with the
name of the feature and there is one branch for each range of the feature
value. The leaf nodes specify class categories. The classification process
for a data point traverses the tree from the root down to one of the leaf
nodes.

Nearest Neighbor Classifier
The nearest neighbor classifier assigns the label of a given data point
based on the majority of the labels of a fixed number (k) of data points
in its neighborhood. It is also called the k-nearest neighbor classifier
(abbreviated as kNN). The classification rule for the kNN algorithm
summarized as follows:

1. Identify the k training data points that lie nearest to the test data
point x.

2. Assign x to the class that is most frequently represented in the
neighborhood.

COMPOUND ACTIVITY PREDICTION
In this section we describe the data used for our experiments and analyze
classification accuracies for the different classifiers. We also analyze the
false positive ratios and plot the ROC curves for the SVM classifier.
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Data
The datasets we use are the pyrimidines and triazines QSAR datasets,
which are obtained from the UCI machine learning repository. The
classification functions are used to predict the inhibition of dihydrofolate
reductase by pyrimidines and triazines [2]. Each dataset contains active
and inactive compounds and is divided into a training set and a test set.
We need to use effective machine learning algorithm to discriminate
active compounds from inactive compounds.

In the pyrimidines dataset, each drug has 3 positions of possible
substitution. There are 9 attributes for each substitution position,
including polari ty,  size,  f lex,  h_doner,  h_acceptor,  pi_doner,
pi_acceptor, polarisable, and the sigma property. Therefore every
compound has 54 attributes. In the triazines dataset, each drug has 6
positions of possible substitution. There are 10 attributes for each
substitution position, including polarity, size, flex, h_doner, h_acceptor,
pi_doner, pi_acceptor, polarisable, sigma, and branch. As a result, each
compound has a total of 120 attributes. There are two drugs in each
compound’s record.

Classification Qualities
We first use 10-fold cross-validation accuracy to measure classification
quality for each of the classifiers in the two datasets. The results are
shown in Table 1, which indicates that SVM has achieved the highest
accuracy.

To investigate the generalization capabilities of the classifiers, each
classifier is also used to predict the test set after being trained using the
training set. Generalization tests are performed on both datasets and the
test results are displayed in Table 2. SVM also has achieved the highest
generalization accuracies, as shown in the table.

Since SVM has obtained superior classification qualities, we study its
behavior in more detail. If an active compound is classified as inactive,
we miss a valuable chance of discovering a drug candidate. This case is
referred to as false negative. On the other hand, if an inactive compound
is classified as active, we get a wrong candidate. This case is referred to
as false positive.

Both false positive and false negative cases decrease classification
accuracy. However, they do not have equal consequences in real
applications. If we were concerned more of discovering drug candidates
than finding a few wrong candidates, we might focus more on eliminating
false negative rates. Therefore we need to investigate the false negative
and false positive ratios in detail, in addition to measuring the classifi-
cation accuracies of the classifiers. We analyze the false positive and
false negative ratios by using the ROC curves. Figure 1 shows the ROC
curves of the SVM classifier for the two datasets in the generalization
test. It is the plot of true positive ratio against the false positive ratio.
We can evaluate the false positive ratio corresponding to any given true

positive ratio from this figure. SVM has performed better on the
pyrimidine dataset because there is a larger area under its ROC curve. For
the pyrimidine dataset, the false positive ratio is 16.2%, and the false
negative ratio is 12.3%. Therefore, slightly more inactive compounds
have been classified as active. For the triazine dataset, however, more
active compounds have been classified as inactive, as indicated by a false
positive ratio of 24.5%, and the false negative ratio of 34%.

Parallel Computation for High Dimensional Datasets
Drug design datasets are often large and high dimensional. The thrombin
drug design dataset [1], which was also used for the 2001 KDD cup, has
139,351 features and 2,543 data points. Computing an kernel matrix on
this dataset requires a considerable amount of processing time. The
CDK2 drug design dataset has 14,223 compounds, each of which has
35,926,557 descriptors [14]. This dataset requires a few Tera

bytes of memory space, which is beyond the capacity of most single
processor computers. However, training time is an even significant
barrier. The time complexity of computing a kernel matrix is O(m2n),
where m is the number of data points and n is the dimension of the input
space. A computer with sufficient memory and the capacity of 4 GFlops
per second, the common speed of today’s high end computer, would need
21 days to compute the kernel matrix for this dataset, and much longer

Table 1. Ten Fold Cross Validation Accuracies of the Classifiers on the
Pyrimidine and Triazine Datasets (NB stands for naive Bayes; DT,
decision tree; 10NN, 10 nearest neighbor)

Table 2. Generalization Accuracies of the Classifiers for the Pyrimidine
and Triazine Datasets (NB stands for naive Bayes; DT, decision tree;
10NN, 10 nearest neighbor)

Figure 1. ROC Curves of the SVM Classifier (the curve marked with
“pyrim” is the ROC curve for the pyrimidine dataset, and “triaz” for the
triazine dataset)

Classifier NB DT 10-NN SVM 
Pyrimid ines 82.1% 92.56% 91.54% 95.91% 
Triazines 65.83% 75.5% 69.17% 78.33% 

 

Classifier NB DT 10-NN SVM 
Pyrimid ines 81.18% 85.77% 83.72% 86.35% 
Triazines 65.91% 65.25% 67.19% 70.83% 

 

 

Figure 2. Parallel Classification Times for Thrombin Dataset

 



60  2005 IRMA International Conference

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. is prohibited.

if there is not enough memory. Though feature selection can reduce the
dimensionality, it also consumes preprocessing time. The solution to
these large datasets is parallel computing.

Linear PSVM has been implemented in parallel [12]. In this paper, we
implemented a parallel nonlinear PSVM using a Gaussian kernel. We used
the dimension-wise partition [11] for parallel kernel computation.
Figure 2 shows that parallel computing times for the thrombin drug
dataset. It took 5 hours to train a PSVM classifier and classify the test
set using a single processor computer. It only takes 4 minutes on a
computer cluster of 65 nodes. Dramatic speedup has been achieved in
this experiment. Therefore parallel computing is a proper solution for
larger and high dimensional datasets.

FEATURE SELECTION AND RANKING
Drug datasets often have a large number of noisy features. Feature
selection can reduce the dimensionality in the input space and improve
computational performance. It can also help gain insights into the
descriptors of the compounds and explain which features are more
important. In addition, smaller number of features can sometimes
improve generalization capability of a classifier. We use the SVM based
recursive feature elimination (RFE) algorithm to rank the features, and
select the most important features to predict the testing data.

SVM-based RFE is an application of the recursive feature elimination [8]
algorithm by using weight magnitude from an SVM as the ranking
criterion. The algorithm is described in the following list.

1. Initialize using a subset of surviving features S = [1,2,…,d], feature
ranked list r =∅;

2. Restrict training examples to good feature indices X = X
0
(:,s);

3. Use SVM to get weight vector ω;
4. Find feature with smallest weight: f = argmin(|ω|);
5. Update feature ranked list: r = [s(f),r];
6. Eliminate the feature with the smallest weight: s = s(1 : f – 1,f+1

: length(s));
7. repeat steps 2-6 until s =∅.

The algorithm repeatedly eliminates features with the smallest weights
and updates the ranked list until all features have been ranked. While
most research uses linear SVM to perform feature elimination, we use
a nonlinear SVM with a Gaussian kernel. We rank the features in the
training set of the pyrimidine dataset. Table 3 shows the ranks for the
first position of the substitution corresponding to the first drug in the
dataset.

Based on the ranks in Table 3, the polarisable property is the most
important feature in the first position of the substitution for the
pyrimidines dataset. Poloarisable indicates the polarisability of the
molecular orbitals. Sigma is the second important feature, which is the
Ã-property. Size ranks the third, which is a measure of the extended
volume of the group. Flex is the fourth important feature, which
measures flexibility and is assigned to the number of rotatable bonds.
Polar is the fifth. It indicates polarity and the amount of residual charges

on the a and b atoms of the substituent. h_doner ranks the sixth in the
feature list. And h acceptor is ninth important feature and indicates the
presence and strength of hydrogen-bonding acceptors and donors.
pi_acceptor and pi_doner indicate the presence and strength of p-
acceptors and p-donors [9]. The important features contribute more to
the activity of a compound. Though acceptor properties are less
important than other features based on the SVM RFE algorithm, they
are important structural characteristics in drug screening.

 Table 4 shows the relationship of SVM generalization accuracy and the
number of features used for the pyrimidine dataset. In the experiment,
we include the important features with higher priority. Table 4 demon-
strates that if we only use the 9 high rank features, the accuracy is not
high enough. When we use more features we get better accuracy. We get
the best accuracy with 27 features and the accuracy begins to decrease
when we use more than 36 features.

CONCLUSIONS
One important problem in modern drug design is to predict the activity
of a compound as active or inactive to a binding target using its
descriptors, which can be accomplished using machine learning ap-
proaches. Computationally, we must use efficient algorithms in the
implementation, since drug datasets are large and high dimensional. We
have implemented the proximal support vector machine since it can be
efficiently trained. For the larger thrombin dataset, we used parallel
computing and made the training time acceptable. To achieve high
classification quality, we have implemented and compared the perfor-
mances of the PSVM, naive Bayes, decision tree and the k-nearest
neighbor classifiers. The classifiers have achieved varied qualities based
on 10 fold cross validation and generalization accuracies. The average
cross validation accuracy was 90.25% for the pyrimidine dataset, and
72.25% for the triazine dataset. We found that SVM often performs
better. We generated the ROC curves for the SVM classifier to investi-
gate the false positive and false negative ratios to solve the asymmetry
issues of the miss classifications. Descriptors of the compounds have
different contributions to their activities and class memberships. We
used a nonlinear feature selection algorithm and selected the most
important features according to their importance. Based on the feature
ranking, we tested with different number of features and obtained the
optimal number of features for SVM classification.

In the future, we will post the algorithms on a web server and make them
available through a web interface.
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